Functions and Malfunctions of Mammalian DNA-Cytosine Deaminases.

The AID/APOBEC family enzymes convert cytosines in single-stranded DNA to uracils, causing base substitutions and strand breaks. They are induced by cytokines produced during the body's inflammatory response to infections, and they help combat infections through diverse mechanisms. AID is essential for the maturation of antibodies and causes mutations and deletions in antibody genes through somatic hypermutation (SHM) and class-switch recombination (CSR) processes. One member of the APOBEC family, APOBEC1, edits mRNA for a protein involved in lipid transport. Members of the APOBEC3 subfamily in humans (APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H) inhibit infections of viruses such as HIV-1, HBV, and HCV, and retrotransposition of endogenous retroelements through mutagenic and nonmutagenic mechanisms. There is emerging consensus that these enzymes can cause mutations in the cellular genome at replication forks or within transcription bubbles depending on the physiological state of the cell and the phase of the cell cycle during which they are expressed. We describe here the state of knowledge about the structures of these enzymes, regulation of their expression, and both the advantageous and deleterious consequences of their expression, including carcinogenesis. We highlight similarities among them and present a holistic view of their regulation and function.

[1]  Svend K. Petersen-Mahrt,et al.  Activation-Induced Deaminase , 2018, eLS.

[2]  Xiaojiang S. Chen,et al.  The in vitro Biochemical Characterization of an HIV-1 Restriction Factor APOBEC3F: Importance of Loop 7 on Both CD1 and CD2 for DNA Binding and Deamination. , 2016, Journal of molecular biology.

[3]  L. Pedersen,et al.  Structural analysis of the activation-induced deoxycytidine deaminase required in immunoglobulin diversification. , 2016, DNA repair.

[4]  R. König,et al.  APOBEC4 Enhances the Replication of HIV-1 , 2016, PloS one.

[5]  O. Dussurget,et al.  Cytosolic Innate Immune Sensing and Signaling upon Infection , 2016, Front. Microbiol..

[6]  M. Weitzman,et al.  APOBEC3A damages the cellular genome during DNA replication , 2016, Cell cycle.

[7]  J. Chaudhuri,et al.  Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity , 2016, Nature Reviews Immunology.

[8]  P. Mieczkowski,et al.  APOBEC3A and APOBEC3B Preferentially Deaminate the Lagging Strand Template during DNA Replication. , 2016, Cell reports.

[9]  Haixu Tang,et al.  Strand-biased cytosine deamination at the replication fork causes cytosine to thymine mutations in Escherichia coli , 2016, Proceedings of the National Academy of Sciences.

[10]  S. Antonarakis,et al.  APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication , 2016, Genome research.

[11]  P. Gearhart,et al.  Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases. , 2016, DNA repair.

[12]  P. Hanawalt,et al.  Mutational Strand Asymmetries in Cancer Genomes Reveal Mechanisms of DNA Damage and Repair , 2016, Cell.

[13]  J. Jiricny,et al.  Non-canonical uracil processing in DNA gives rise to double-strand breaks and deletions: relevance to class switch recombination , 2016, Nucleic acids research.

[14]  D. Rueda,et al.  Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution , 2015, Nature Communications.

[15]  Kin Chan,et al.  Clusters of Multiple Mutations: Incidence and Molecular Mechanisms. , 2015, Annual review of genetics.

[16]  A. Rosenspire,et al.  Anergic B Cells: Precarious On-Call Warriors at the Nexus of Autoimmunity and False-Flagged Pathogens , 2015, Front. Immunol..

[17]  G. Barber STING: infection, inflammation and cancer , 2015, Nature Reviews Immunology.

[18]  L. Notarangelo,et al.  Activation-Induced Cytidine Deaminase Expression in Human B Cell Precursors Is Essential for Central B Cell Tolerance. , 2015, Immunity.

[19]  S. Ross,et al.  APOBEC3 Proteins in Viral Immunity , 2015, The Journal of Immunology.

[20]  Steven A. Roberts,et al.  APOBEC-Induced Cancer Mutations Are Uniquely Enriched in Early-Replicating, Gene-Dense, and Active Chromatin Regions. , 2015, Cell reports.

[21]  Rebecca M. McDougle,et al.  The PKC/NF-κB signaling pathway induces APOBEC3B expression in multiple human cancers. , 2015, Cancer research.

[22]  O. Elemento,et al.  DNA Methylation Dynamics of Germinal Center B Cells Are Mediated by AID. , 2015, Cell reports.

[23]  M. Carpenter,et al.  Crystal Structure of the DNA Deaminase APOBEC3B Catalytic Domain* , 2015, The Journal of Biological Chemistry.

[24]  A. Bhagwat,et al.  Characterization of the Catalytic Domain of Human APOBEC3B and the Critical Structural Role for a Conserved Methionine. , 2015, Journal of molecular biology.

[25]  J. Li,et al.  Associations between activation-induced cytidine deaminase/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like cytidine deaminase expression, hepatitis B virus (HBV) replication and HBV-associated liver disease (Review) , 2015, Molecular medicine reports.

[26]  Chi H Mak,et al.  Random-walk enzymes. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  N. Maizels,et al.  Cell Cycle Regulates Nuclear Stability of AID and Determines the Cellular Response to AID , 2015, PLoS genetics.

[28]  Gad Getz,et al.  An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers , 2015, Nature Genetics.

[29]  L. Willems,et al.  APOBEC3 Interference during Replication of Viral Genomes , 2015, Viruses.

[30]  G. Sethi,et al.  Analysis of the intricate relationship between chronic inflammation and cancer. , 2015, The Biochemical journal.

[31]  J. Chaudhuri,et al.  Non-coding RNA Generated following Lariat Debranching Mediates Targeting of AID to DNA , 2015, Cell.

[32]  C. Schiffer,et al.  The ssDNA Mutator APOBEC3A Is Regulated by Cooperative Dimerization. , 2015, Structure.

[33]  C. Schiffer,et al.  Structure of the Vif-binding domain of the antiviral enzyme APOBEC3G , 2015, Nature Structural &Molecular Biology.

[34]  J. Dudley,et al.  APOBECs and virus restriction. , 2015, Virology.

[35]  Igor B. Rogozin,et al.  Disruption of Transcriptional Coactivator Sub1 Leads to Genome-Wide Re-distribution of Clustered Mutations Induced by APOBEC in Active Yeast Genes , 2015, PLoS genetics.

[36]  S. Patnaik,et al.  APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages , 2015, Nature Communications.

[37]  H. Lucas,et al.  Catalytic pocket inaccessibility of activation-induced cytidine deaminase is a safeguard against excessive mutagenic activity. , 2015, Structure.

[38]  Dong Young Kim The assembly of Vif ubiquitin E3 ligase for APOBEC3 degradation , 2015, Archives of pharmacal research.

[39]  S. Horswell,et al.  APOBEC3A Is Implicated in a Novel Class of G-to-A mRNA Editing in WT1 Transcripts , 2015, PloS one.

[40]  Vasco M. Barreto,et al.  Activation-induced cytidine deaminase and active DNA demethylation. , 2015, Trends in biochemical sciences.

[41]  Kevin M. McBride,et al.  Absence of the Uracil DNA Glycosylase of Murine Gammaherpesvirus 68 Impairs Replication and Delays the Establishment of Latency In Vivo , 2015, Journal of Virology.

[42]  V. C. Vieira,et al.  Human Papillomavirus E6 Triggers Upregulation of the Antiviral and Cancer Genomic DNA Deaminase APOBEC3B , 2014, mBio.

[43]  C. E. Schrader,et al.  IgH Chain Class Switch Recombination: Mechanism and Regulation , 2014, The Journal of Immunology.

[44]  A. Bhagwat,et al.  Transcription-associated mutagenesis. , 2014, Annual review of genetics.

[45]  M. Santiago,et al.  APOBEC3A Functions as a Restriction Factor of Human Papillomavirus , 2014, Journal of Virology.

[46]  A. Moris,et al.  AID and APOBECs span the gap between innate and adaptive immunity , 2014, Front. Microbiol..

[47]  A. Clark,et al.  A big surprise in the little zygote: the curious business of losing methylated cytosines. , 2014, Cell stem cell.

[48]  Kazuyuki Aihara,et al.  APOBEC3D and APOBEC3F Potently Promote HIV-1 Diversification and Evolution in Humanized Mouse Model , 2014, PLoS pathogens.

[49]  HaroldC. Smith,et al.  Structural insights for HIV-1 therapeutic strategies targeting Vif. , 2014, Trends in biochemical sciences.

[50]  L. Chelico,et al.  Suppression of APOBEC3-mediated restriction of HIV-1 by Vif , 2014, Front. Microbiol..

[51]  Alberto Martin,et al.  Genomic Uracil Homeostasis during Normal B Cell Maturation and Loss of This Balance during B Cell Cancer Development , 2014, Molecular and Cellular Biology.

[52]  R. Rabadán,et al.  Noncoding RNA transcription targets AID to divergently transcribed loci in B cells , 2014, Nature.

[53]  C. Sala,et al.  Erratum: The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas , 2014, Genome Biology.

[54]  Peter J. Huwe,et al.  High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase , 2014, Nucleic acids research.

[55]  S. Henderson,et al.  APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. , 2014, Cell reports.

[56]  Y. Lyubchenko,et al.  Interaction of APOBEC3A with DNA Assessed by Atomic Force Microscopy , 2014, PloS one.

[57]  G. Victora,et al.  Clonal and cellular dynamics in germinal centers. , 2014, Current opinion in immunology.

[58]  S. Hubbard,et al.  A DNA Sequence Recognition Loop on APOBEC3A Controls Substrate Specificity , 2014, PloS one.

[59]  H. Aydin,et al.  Structure-guided analysis of the human APOBEC3-HIV restrictome. , 2014, Structure.

[60]  J. V. Moran,et al.  APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition , 2014, eLife.

[61]  Xavier Robert,et al.  Deciphering key features in protein structures with the new ENDscript server , 2014, Nucleic Acids Res..

[62]  M. Douglas,et al.  Virus induced inflammation and cancer development. , 2014, Cancer letters.

[63]  S. Wain-Hobson,et al.  Erroneous identification of APOBEC3-edited chromosomal DNA in cancer genomics , 2014, British Journal of Cancer.

[64]  Ryan C. Burdick,et al.  Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule them all. , 2014, Journal of molecular biology.

[65]  R. Harris,et al.  APOBEC3 multimerization correlates with HIV-1 packaging and restriction activity in living cells. , 2014, Journal of molecular biology.

[66]  T. Liang,et al.  Specific and Nonhepatotoxic Degradation of Nuclear Hepatitis B Virus cccDNA , 2014, Science.

[67]  L. Chelico,et al.  Different Mutagenic Potential of HIV-1 Restriction Factors APOBEC3G and APOBEC3F Is Determined by Distinct Single-Stranded DNA Scanning Mechanisms , 2014, PLoS pathogens.

[68]  B. Vogelstein,et al.  Activation of PI3Kα by physiological effectors and by oncogenic mutations: structural and dynamic effects , 2014, Biophysical Reviews.

[69]  G. Cao,et al.  Human cytidine deaminases facilitate hepatitis B virus evolution and link inflammation and hepatocellular carcinoma. , 2014, Cancer letters.

[70]  X. Ji,et al.  Biochemical and Biological Studies of Mouse APOBEC3 , 2014, Journal of Virology.

[71]  M. Yokoyama,et al.  APOBEC3G Oligomerization Is Associated with the Inhibition of Both Alu and LINE-1 Retrotransposition , 2013, PloS one.

[72]  M. McGarvey,et al.  The inhibition of hepatitis B virus by APOBEC cytidine deaminases , 2013, Journal of viral hepatitis.

[73]  M. Muramatsu,et al.  APOBEC3 Deaminases Induce Hypermutation in Human Papillomavirus 16 DNA upon Beta Interferon Stimulation , 2013, Journal of Virology.

[74]  Rommie E. Amaro,et al.  The local dinucleotide preference of APOBEC3G can be altered from 5'-CC to 5'-TC by a single amino acid substitution. , 2013, Journal of molecular biology.

[75]  Jeffrey E. Lee,et al.  Structural determinants of HIV-1 Vif susceptibility and DNA binding in APOBEC3F , 2013, Nature Communications.

[76]  Henning Hofmann,et al.  Human LINE-1 restriction by APOBEC3C is deaminase independent and mediated by an ORF1p interaction that affects LINE reverse transcriptase activity , 2013, Nucleic acids research.

[77]  M. Muramatsu,et al.  Interleukin-1 and Tumor Necrosis Factor-α Trigger Restriction of Hepatitis B Virus Infection via a Cytidine Deaminase Activation-induced Cytidine Deaminase (AID) , 2013, The Journal of Biological Chemistry.

[78]  Igor B. Rogozin,et al.  Genome-Wide Mutation Avalanches Induced in Diploid Yeast Cells by a Base Analog or an APOBEC Deaminase , 2013, PLoS genetics.

[79]  L. Loeb,et al.  APOBEC3B mutagenesis in cancer , 2013, Nature Genetics.

[80]  M. Goodman,et al.  A Biochemical Analysis Linking APOBEC3A to Disparate HIV-1 Restriction and Skin Cancer* , 2013, The Journal of Biological Chemistry.

[81]  M. Goodman,et al.  A Mathematical Model for Scanning and Catalysis on Single-stranded DNA, Illustrated with Activation-induced Deoxycytidine Deaminase*♦ , 2013, The Journal of Biological Chemistry.

[82]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[83]  D. Boffelli,et al.  Activation-induced cytidine deaminase (AID) is necessary for the epithelial–mesenchymal transition in mammary epithelial cells , 2013, Proceedings of the National Academy of Sciences.

[84]  N. A. Temiz,et al.  Evidence for APOBEC3B mutagenesis in multiple human cancers , 2013, Nature Genetics.

[85]  Steven A. Roberts,et al.  An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers , 2013, Nature Genetics.

[86]  V. C. Vieira,et al.  The Role of Cytidine Deaminases on Innate Immune Responses against Human Viral Infections , 2013, BioMed research international.

[87]  S. Wain-Hobson,et al.  Efficient Deamination of 5-Methylcytidine and 5-Substituted Cytidine Residues in DNA by Human APOBEC3A Cytidine Deaminase , 2013, PloS one.

[88]  J. Couture,et al.  Binding of RNA by APOBEC3G controls deamination-independent restriction of retroviruses , 2013, Nucleic acids research.

[89]  C. Schiffer,et al.  Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 Vif-binding domain. , 2013, Structure.

[90]  O. Elemento,et al.  AID stabilizes stem cell phenotype by removing epigenetic memory of pluripotency genes , 2013, Nature.

[91]  M. Davenport,et al.  Footprint of APOBEC3 on the Genome of Human Retroelements , 2013, Journal of Virology.

[92]  E. Greene,et al.  How do proteins locate specific targets in DNA? , 2013, Chemical physics letters.

[93]  T. Tuschl,et al.  A comprehensive analysis of AID's effects on the transcriptome and methylome of activated B cells , 2013, Nature Immunology.

[94]  A. Gronenborn,et al.  NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity , 2013, Nature Communications.

[95]  Lela Lackey,et al.  Endogenous APOBEC3A DNA Cytosine Deaminase Is Cytoplasmic and Nongenotoxic* , 2013, The Journal of Biological Chemistry.

[96]  D. Huang,et al.  Interleukin-2 Inhibits HIV-1 Replication in Some Human T Cell Lymphotrophic Virus-1-infected Cell Lines via the Induction and Incorporation of APOBEC3G into the Virion* , 2013, The Journal of Biological Chemistry.

[97]  M. Stratton,et al.  DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis , 2013, eLife.

[98]  L. Notarangelo,et al.  Immunodeficiency with Autoimmunity: Beyond the Paradox , 2013, Front. Immunol..

[99]  川俣 豊隆 Activation-induced cytidine deaminase(AID)を介するメシル酸イマチニブのB細胞分化抑制作用の解析 , 2013 .

[100]  H. Blau,et al.  A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[101]  Jason B. Nikas,et al.  APOBEC3B is an enzymatic source of mutation in breast cancer , 2013, Nature.

[102]  Kefei Yu,et al.  Apurinic/Apyrimidinic Endonuclease 1 Is the Essential Nuclease during Immunoglobulin Class Switch Recombination , 2013, Molecular and Cellular Biology.

[103]  D. Gordenin,et al.  Base Damage within Single-Strand DNA Underlies In Vivo Hypermutability Induced by a Ubiquitous Environmental Agent , 2012, PLoS genetics.

[104]  M. Malim,et al.  Suppression of HIV-1 Infection by APOBEC3 Proteins in Primary Human CD4+ T Cells Is Associated with Inhibition of Processive Reverse Transcription as Well as Excessive Cytidine Deamination , 2012, Journal of Virology.

[105]  W. Sugiura,et al.  The APOBEC3C crystal structure and the interface for HIV-1 Vif binding , 2012, Nature Structural &Molecular Biology.

[106]  Cindy Follonier,et al.  Noncanonical mismatch repair as a source of genomic instability in human cells. , 2012, Molecular cell.

[107]  Nina M. Donghia,et al.  Activation-Induced Cytidine Deaminase-Initiated Off-Target DNA Breaks Are Detected and Resolved during S Phase , 2012, The Journal of Immunology.

[108]  Svend K. Petersen-Mahrt,et al.  AID Enzymatic Activity Is Inversely Proportional to the Size of Cytosine C5 Orbital Cloud , 2012, PloS one.

[109]  Huixin Xu,et al.  Biochemical Analysis of Hypermutation by the Deoxycytidine Deaminase APOBEC3A* , 2012, The Journal of Biological Chemistry.

[110]  A. Bhagwat,et al.  Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G , 2012, Nucleic acids research.

[111]  Huijue Jia,et al.  AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation , 2012, Nature chemical biology.

[112]  Steven A. Roberts,et al.  Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. , 2012, Molecular cell.

[113]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[114]  Adrian L. Smith,et al.  Ectopic restriction of DNA repair reveals that UNG2 excises AID-induced uracils predominantly or exclusively during G1 phase , 2012, The Journal of experimental medicine.

[115]  V. Simon,et al.  APOBEC3A, APOBEC3B, and APOBEC3H Haplotype 2 Restrict Human T-Lymphotropic Virus Type 1 , 2012, Journal of Virology.

[116]  T. Upton,et al.  Single-stranded DNA Scanning and Deamination by APOBEC3G Cytidine Deaminase at Single Molecule Resolution*♦ , 2012, The Journal of Biological Chemistry.

[117]  T. Kawaguchi,et al.  Nonimmunoglobulin target loci of activation-induced cytidine deaminase (AID) share unique features with immunoglobulin genes , 2012, Proceedings of the National Academy of Sciences.

[118]  Rahul M Kohli,et al.  The curious chemical biology of cytosine: deamination, methylation, and oxidation as modulators of genomic potential. , 2012, ACS chemical biology.

[119]  Keiichiro Suzuki,et al.  Activation-Induced Cytidine Deaminase Expression in CD4+ T Cells is Associated with a Unique IL-10-Producing Subset that Increases with Age , 2011, PloS one.

[120]  Michel C. Nussenzweig,et al.  Translocation-Capture Sequencing Reveals the Extent and Nature of Chromosomal Rearrangements in B Lymphocytes , 2011, Cell.

[121]  Stefano Monti,et al.  Genome-wide Translocation Sequencing Reveals Mechanisms of Chromosome Breaks and Rearrangements in B Cells , 2011, Cell.

[122]  Chuan He,et al.  Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine , 2011, Science.

[123]  J. Darlix,et al.  APOBEC3A Is a Specific Inhibitor of the Early Phases of HIV-1 Infection in Myeloid Cells , 2011, PLoS pathogens.

[124]  G. Barber Cytoplasmic DNA innate immune pathways , 2011, Immunological Reviews.

[125]  Lela Lackey,et al.  Human and Rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H Demonstrate a Conserved Capacity To Restrict Vif-Deficient HIV-1 , 2011, Journal of Virology.

[126]  M. Emerman,et al.  The Breadth of Antiviral Activity of Apobec3DE in Chimpanzees Has Been Driven by Positive Selection , 2011, Journal of Virology.

[127]  Shou-Jiang Gao,et al.  Viruses and human cancer: from detection to causality. , 2011, Cancer letters.

[128]  F. Rieux-Laucat,et al.  Activation-induced cytidine deaminase (AID) is required for B-cell tolerance in humans , 2011, Proceedings of the National Academy of Sciences.

[129]  G. Kelsoe,et al.  Activation-induced cytidine deaminase mediates central tolerance in B cells , 2011, Proceedings of the National Academy of Sciences.

[130]  A. Meyerhans,et al.  Genetic Editing of Herpes Simplex Virus 1 and Epstein-Barr Herpesvirus Genomes by Human APOBEC3 Cytidine Deaminases in Culture and In Vivo , 2011, Journal of Virology.

[131]  M. Goodman,et al.  Analysis of a Single-stranded DNA-scanning Process in Which Activation-induced Deoxycytidine Deaminase (AID) Deaminates C to U Haphazardly and Inefficiently to Ensure Mutational Diversity*♦ , 2011, The Journal of Biological Chemistry.

[132]  F. Alt,et al.  Mechanisms that promote and suppress chromosomal translocations in lymphocytes. , 2011, Annual review of immunology.

[133]  F. Alt,et al.  The RNA Exosome Targets the AID Cytidine Deaminase to Both Strands of Transcribed Duplex DNA Substrates , 2011, Cell.

[134]  Olivier Michielin,et al.  Structure-Function Analyses Point to a Polynucleotide-Accommodating Groove Essential for APOBEC3A Restriction Activities , 2010, Journal of Virology.

[135]  Y. Lyubchenko,et al.  Atomic Force Microscopy Studies Provide Direct Evidence for Dimerization of the HIV Restriction Factor APOBEC3G* , 2010, The Journal of Biological Chemistry.

[136]  Michael M. Mwangi,et al.  Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA editing targets in transcript 3′ UTRs , 2010, Nature Structural &Molecular Biology.

[137]  B. Roche,et al.  Deoxyuridine Triphosphate Incorporation during Somatic Hypermutation of Mouse VkOx Genes after Immunization with Phenyloxazolone , 2010, The Journal of Immunology.

[138]  L. Wysocki,et al.  Somatic hypermutation as a generator of antinuclear antibodies in a murine model of systemic autoimmunity , 2010, The Journal of experimental medicine.

[139]  T. Nakajima,et al.  No evidence of an association between the APOBEC3B deletion polymorphism and susceptibility to HIV infection and AIDS in Japanese and Indian populations. , 2010, The Journal of infectious diseases.

[140]  M. Matsuoka,et al.  APOBEC3G Generates Nonsense Mutations in Human T-Cell Leukemia Virus Type 1 Proviral Genomes In Vivo , 2010, Journal of Virology.

[141]  M. Carpenter,et al.  Determinants of sequence-specificity within human AID and APOBEC3G. , 2010, DNA repair.

[142]  J Kitaura,et al.  AID-induced T-lymphoma or B-leukemia/lymphoma in a mouse BMT model , 2010, Leukemia.

[143]  W. Brown,et al.  Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction , 2010, Nucleic acids research.

[144]  D. Erie,et al.  Structural Model for Deoxycytidine Deamination Mechanisms of the HIV-1 Inactivation Enzyme APOBEC3G*♦ , 2010, The Journal of Biological Chemistry.

[145]  B. Zheng,et al.  Deficiency in activation‐induced cytidine deaminase promotes systemic autoimmunity in lpr mice on a C57BL/6 background , 2010, Clinical and experimental immunology.

[146]  M. Neuberger,et al.  Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID , 2010, The Journal of experimental medicine.

[147]  M. Stenglein,et al.  APOBEC3 proteins mediate the clearance of foreign DNA from human cells , 2010, Nature Structural &Molecular Biology.

[148]  J. Tavernier,et al.  Definition of the interacting interfaces of Apobec3G and HIV-1 Vif using MAPPIT mutagenesis analysis , 2009, Nucleic acids research.

[149]  M. Cook,et al.  Dysregulation of germinal centres in autoimmune disease , 2009, Nature Reviews Immunology.

[150]  W. Grizzle,et al.  Increased Expression of Activation‐Induced Cytidine Deaminase is Associated with Anti‐CCP and Rheumatoid Factor in Rheumatoid Arthritis , 2009, Scandinavian journal of immunology.

[151]  M. Malim,et al.  Defining APOBEC3 Expression Patterns in Human Tissues and Hematopoietic Cell Subsets , 2009, Journal of Virology.

[152]  H. Matsuo,et al.  An extended structure of the APOBEC3G catalytic domain suggests a unique holoenzyme model. , 2009, Journal of molecular biology.

[153]  R. Maul,et al.  A Portable Hot Spot Recognition Loop Transfers Sequence Preferences from APOBEC Family Members to Activation-induced Cytidine Deaminase* , 2009, The Journal of Biological Chemistry.

[154]  V. Pathak,et al.  Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag: APOBEC3G multimerization is dependent on its association with RNA , 2009, Retrovirology.

[155]  David R. Liu,et al.  Conversion of 5-Methylcytosine to 5- Hydroxymethylcytosine in Mammalian DNA by the MLL Partner TET1 , 2009 .

[156]  M. Weitzman,et al.  Deaminase-Independent Inhibition of Parvoviruses by the APOBEC3A Cytidine Deaminase , 2009, PLoS pathogens.

[157]  M. Goodman,et al.  Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[158]  Sridevi Devaraj,et al.  Apolipoprotein B and cardiovascular disease risk: position statement from the AACC Lipoproteins and Vascular Diseases Division Working Group on Best Practices. , 2009, Clinical chemistry.

[159]  G. Superti-Furga,et al.  An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome , 2009, Nature Immunology.

[160]  M. Malim,et al.  RNA-Dependent Oligomerization of APOBEC3G Is Required for Restriction of HIV-1 , 2009, PLoS pathogens.

[161]  S. Yokoyama,et al.  Structure, interaction and real‐time monitoring of the enzymatic reaction of wild‐type APOBEC3G , 2009, The EMBO journal.

[162]  Chuancang Jiang,et al.  Activation‐induced deaminase heterozygous MRL/lpr mice are delayed in the production of high‐affinity pathogenic antibodies and in the development of lupus nephritis , 2009, Immunology.

[163]  A. Bhagwat,et al.  Transcriptional pausing and stalling causes multiple clustered mutations by human activation‐induced deaminase , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[164]  M. Nussenzweig,et al.  AID Is Required for the Chromosomal Breaks in c-myc that Lead to c-myc/IgH Translocations , 2008, Cell.

[165]  M. Malim,et al.  APOBEC3G Inhibits Elongation of HIV-1 Reverse Transcripts , 2008, PLoS pathogens.

[166]  V. Pathak,et al.  Distinct Domains within APOBEC3G and APOBEC3F Interact with Separate Regions of Human Immunodeficiency Virus Type 1 Vif , 2008, Journal of Virology.

[167]  R. Stevens,et al.  Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications , 2008, Nature.

[168]  S. O’Brien,et al.  Guidelines for Naming Nonprimate APOBEC3 Genes and Proteins , 2008, Journal of Virology.

[169]  Toshihiro Sato,et al.  Phosphorylation of APOBEC3G by protein kinase A regulates its interaction with HIV-1 Vif , 2008, Nature Structural &Molecular Biology.

[170]  M. Kotler,et al.  Hypermutation by intersegmental transfer of APOBEC3G cytidine deaminase , 2008, Nature Structural &Molecular Biology.

[171]  M. Emerman,et al.  Antiretroelement activity of APOBEC3H was lost twice in recent human evolution. , 2008, Cell host & microbe.

[172]  T. Honjo,et al.  Activation-induced cytidine deaminase links between inflammation and the development of colitis-associated colorectal cancers. , 2008, Gastroenterology.

[173]  K. Itoh,et al.  Activation-Induced Cytidine Deaminase Deficiency Causes Organ-Specific Autoimmune Disease , 2008, PloS one.

[174]  B. Wright,et al.  I. VH gene transcription creates stabilized secondary structures for coordinated mutagenesis during somatic hypermutation. , 2008, Molecular immunology.

[175]  B. Wright,et al.  II. Correlations between secondary structure stability and mutation frequency during somatic hypermutation. , 2008, Molecular immunology.

[176]  Bryan R. G. Williams,et al.  Interferon-inducible antiviral effectors , 2008, Nature Reviews Immunology.

[177]  K. Strebel,et al.  HIV-1 Vif, APOBEC, and Intrinsic Immunity , 2008, Retrovirology.

[178]  S. Conticello The AID/APOBEC family of nucleic acid mutators , 2008, Genome Biology.

[179]  D. Erie,et al.  A Model for Oligomeric Regulation of APOBEC3G Cytosine Deaminase-dependent Restriction of HIV* , 2008, Journal of Biological Chemistry.

[180]  S. Wain-Hobson,et al.  Evidence for Editing of Human Papillomavirus DNA by APOBEC3 in Benign and Precancerous Lesions , 2008, Science.

[181]  C. E. Schrader,et al.  Mechanism and regulation of class switch recombination. , 2008, Annual review of immunology.

[182]  Colin R. Parrish,et al.  Presence and role of cytosine methylation in DNA viruses of animals , 2008, Nucleic acids research.

[183]  H. Matsuo,et al.  Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G , 2008, Nature.

[184]  M. Khan,et al.  HIV-1 Vif promotes the formation of high molecular mass APOBEC3G complexes. , 2008, Virology.

[185]  Jialing Huang,et al.  APOBEC3G upregulation by alpha interferon restricts human immunodeficiency virus type 1 infection in human peripheral plasmacytoid dendritic cells. , 2008, The Journal of general virology.

[186]  D. Schatz,et al.  Two levels of protection for the B cell genome during somatic hypermutation , 2008, Nature.

[187]  E. Selsing,et al.  Activation-Induced Cytidine Deaminase-Dependent DNA Breaks in Class Switch Recombination Occur during G1 Phase of the Cell Cycle and Depend upon Mismatch Repair1 , 2007, The Journal of Immunology.

[188]  Jialing Huang,et al.  The interferon-induced expression of APOBEC3G in human blood-brain barrier exerts a potent intrinsic immunity to block HIV-1 entry to central nervous system. , 2007, Virology.

[189]  R. Medzhitov Recognition of microorganisms and activation of the immune response , 2007, Nature.

[190]  A. Gronenborn,et al.  Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G , 2007, Nucleic acids research.

[191]  T. Honjo,et al.  Expression of activation-induced cytidine deaminase in human hepatocytes via NF-κB signaling , 2007, Oncogene.

[192]  K. Honda,et al.  DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response , 2007, Nature.

[193]  M. Neuberger,et al.  Molecular mechanisms of antibody somatic hypermutation. , 2007, Annual review of biochemistry.

[194]  G. Kissling,et al.  Abrogation of Lupus Nephritis in Activation-Induced Deaminase-Deficient MRL/lpr Mice1 , 2007, The Journal of Immunology.

[195]  W. Reik Stability and flexibility of epigenetic gene regulation in mammalian development , 2007, Nature.

[196]  W. Grizzle,et al.  Overexpression of Activation-Induced Cytidine Deaminase in B Cells Is Associated with Production of Highly Pathogenic Autoantibodies1 , 2007, The Journal of Immunology.

[197]  P. Spearman,et al.  APOBEC3G Multimers Are Recruited to the Plasma Membrane for Packaging into Human Immunodeficiency Virus Type 1 Virus-Like Particles in an RNA-Dependent Process Requiring the NC Basic Linker , 2007, Journal of Virology.

[198]  M. Malim,et al.  APOBEC-mediated viral restriction: not simply editing? , 2007, Trends in biochemical sciences.

[199]  G. Heidecker,et al.  Resistance of human T cell leukemia virus type 1 to APOBEC3G restriction is mediated by elements in nucleocapsid , 2007, Proceedings of the National Academy of Sciences.

[200]  M. Malim,et al.  APOBEC3F Can Inhibit the Accumulation of HIV-1 Reverse Transcription Products in the Absence of Hypermutation , 2007, Journal of Biological Chemistry.

[201]  M. Klein,et al.  The APOBEC-2 crystal structure and functional implications for the deaminase AID , 2007, Nature.

[202]  M. Neuberger,et al.  Somatic hypermutation: activation-induced deaminase for C/G followed by polymerase η for A/T , 2007, The Journal of experimental medicine.

[203]  J. Wedekind,et al.  Nanostructures of APOBEC3G Support a Hierarchical Assembly Model of High Molecular Mass Ribonucleoprotein Particles from Dimeric Subunits* , 2006, Journal of Biological Chemistry.

[204]  W. Greene,et al.  Distinct Patterns of Cytokine Regulation of APOBEC3G Expression and Activity in Primary Lymphocytes, Macrophages, and Dendritic Cells* , 2006, Journal of Biological Chemistry.

[205]  D. Nicolae,et al.  Somatic Hypermutation and Class Switch Recombination in Msh6−/−Ung−/− Double-Knockout Mice1 , 2006, The Journal of Immunology.

[206]  M. Neuberger,et al.  The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2 −/− ung −/− mice , 2006, The Journal of experimental medicine.

[207]  J. Löwer,et al.  APOBEC3 Proteins Inhibit Human LINE-1 Retrotransposition* , 2006, Journal of Biological Chemistry.

[208]  M. O’Donnell,et al.  DNA replication: keep moving and don't mind the gap. , 2006, Molecular cell.

[209]  P. Casali,et al.  DNA repair in antibody somatic hypermutation. , 2006, Trends in immunology.

[210]  M. Stenglein,et al.  APOBEC3B and APOBEC3F Inhibit L1 Retrotransposition by a DNA Deamination-independent Mechanism* , 2006, Journal of Biological Chemistry.

[211]  D. Parkin,et al.  The global health burden of infection‐associated cancers in the year 2002 , 2006, International journal of cancer.

[212]  J. V. Moran,et al.  Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[213]  S. Wain-Hobson,et al.  Interferon‐inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication , 2006, Hepatology.

[214]  M. Goodman,et al.  APOBEC3G DNA deaminase acts processively 3′ → 5′ on single-stranded DNA , 2006, Nature Structural &Molecular Biology.

[215]  H. Seno,et al.  Anti-viral protein APOBEC3G is induced by interferon-α stimulation in human hepatocytes , 2006 .

[216]  C. Lilley,et al.  APOBEC3A Is a Potent Inhibitor of Adeno-Associated Virus and Retrotransposons , 2006, Current Biology.

[217]  S. Wahl,et al.  Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti–HIV-1 activity , 2006, The Journal of experimental medicine.

[218]  S. Calattini,et al.  Restriction of Foamy Viruses by APOBEC Cytidine Deaminases , 2006, Journal of Virology.

[219]  A. Reymond,et al.  Emergence of Young Human Genes after a Burst of Retroposition in Primates , 2005, PLoS biology.

[220]  B. Cullen,et al.  Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif. , 2005, Virology.

[221]  C. E. Schrader,et al.  Inducible DNA breaks in Ig S regions are dependent on AID and UNG , 2005, The Journal of experimental medicine.

[222]  E. Koonin,et al.  APOBEC4, a New Member of the AID/APOBEC Family of Polynucleotide (Deoxy)Cytidine Deaminases Predicted by Computational Analysis , 2005, Cell cycle.

[223]  B. Cullen,et al.  Foamy Virus Bet Proteins Function as Novel Inhibitors of the APOBEC3 Family of Innate Antiretroviral Defense Factors , 2005, Journal of Virology.

[224]  Robert E. Johnson,et al.  Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. , 2005, Annual review of biochemistry.

[225]  S. Wain-Hobson,et al.  Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[226]  Amane Sasada,et al.  APOBEC3G targets human T-cell leukemia virus type 1 , 2005, Retrovirology.

[227]  W. Reik,et al.  Epigenetic reprogramming in mammals. , 2005, Human molecular genetics.

[228]  B. Cullen,et al.  Inhibition of a Yeast LTR Retrotransposon by Human APOBEC3 Cytidine Deaminases , 2005, Current Biology.

[229]  T. Honjo,et al.  A target selection of somatic hypermutations is regulated similarly between T and B cells upon activation-induced cytidine deaminase expression. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[230]  Alberto Martin,et al.  Methylation protects cytidines from AID-mediated deamination. , 2005, Molecular immunology.

[231]  T. Heidmann,et al.  APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses , 2005, Nature.

[232]  R. König,et al.  APOBEC3B and APOBEC3C Are Potent Inhibitors of Simian Immunodeficiency Virus Replication* , 2004, Journal of Biological Chemistry.

[233]  Wendy Dean,et al.  Activation-induced Cytidine Deaminase Deaminates 5-Methylcytosine in DNA and Is Expressed in Pluripotent Tissues , 2004, Journal of Biological Chemistry.

[234]  Myron F. Goodman,et al.  Biochemical Analysis of Hypermutational Targeting by Wild Type and Mutant Activation-induced Cytidine Deaminase* , 2004, Journal of Biological Chemistry.

[235]  L. Pasqualucci,et al.  Expression of the AID protein in normal and neoplastic B cells. , 2004, Blood.

[236]  Reuben S. Harris,et al.  Retroviral restriction by APOBEC proteins , 2004, Nature Reviews Immunology.

[237]  Ash A. Alizadeh,et al.  AID is expressed in germinal center B-cell-like and activated B-cell-like diffuse large-cell lymphomas and is not correlated with intraclonal heterogeneity , 2004, Leukemia.

[238]  M. Neuberger,et al.  Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. , 2004, Molecular cell.

[239]  N. Bannert,et al.  Retroelements and the human genome: New perspectives on an old relation , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[240]  M. Marin,et al.  Transcriptional Regulation of APOBEC3G, a Cytidine Deaminase That Hypermutates Human Immunodeficiency Virus* , 2004, Journal of Biological Chemistry.

[241]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[242]  U. Storb,et al.  Activation-induced cytidine deaminase (AID) can target both DNA strands when the DNA is supercoiled. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[243]  M. Nussenzweig,et al.  AID Is Required for c-myc/IgH Chromosome Translocations In Vivo , 2004, Cell.

[244]  J. Marko,et al.  How do site-specific DNA-binding proteins find their targets? , 2004, Nucleic acids research.

[245]  Tae-Min Kim,et al.  Periodic Explosive Expansion of Human Retroelements Associated with the Evolution of the Hominoid Primate , 2004, Journal of Korean medical science.

[246]  H. Ohno,et al.  Activation-induced cytidine deaminase expression in follicular lymphoma: association between AID expression and ongoing mutation in FL , 2004, Leukemia.

[247]  Reuben S Harris,et al.  Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. , 2004, Journal of molecular biology.

[248]  F. Alt,et al.  Induction of Activation-induced Cytidine Deaminase Gene Expression by Il-4 and Cd40 Ligation Is Dependent on Stat6 and Nfkb , 2022 .

[249]  A. Bhagwat DNA-cytosine deaminases: from antibody maturation to antiviral defense. , 2004, DNA repair.

[250]  Y. Yokota,et al.  Transcription-Coupled Events Associating with Immunoglobulin Switch Region Chromatin , 2003, Science.

[251]  Reuben S Harris,et al.  The Vif Protein of HIV Triggers Degradation of the Human Antiretroviral DNA Deaminase APOBEC3G , 2003, Current Biology.

[252]  Yunkai Yu,et al.  Induction of APOBEC3G Ubiquitination and Degradation by an HIV-1 Vif-Cul5-SCF Complex , 2003, Science.

[253]  M. Malim,et al.  The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif , 2003, Nature Medicine.

[254]  E. Eichler,et al.  An Alu transposition model for the origin and expansion of human segmental duplications. , 2003, American journal of human genetics.

[255]  M. Potter Neoplastic development in plasma cells , 2003, Immunological reviews.

[256]  R. Bende,et al.  Expression of activation-induced cytidine deaminase is confined to B-cell non-Hodgkin's lymphomas of germinal-center phenotype. , 2003, Cancer research.

[257]  R. König,et al.  Species-Specific Exclusion of APOBEC3G from HIV-1 Virions by Vif , 2003, Cell.

[258]  Gersende Caron,et al.  Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts , 2003, Nature.

[259]  Hui Zhang,et al.  The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA , 2003, Nature.

[260]  M. Goodman,et al.  Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation , 2003, Nature.

[261]  A. Bhagwat,et al.  Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. , 2003, Nucleic acids research.

[262]  Reuben S Harris,et al.  Immunity through DNA deamination. , 2003, Trends in biochemical sciences.

[263]  M. Neuberger,et al.  In Vitro Deamination of Cytosine to Uracil in Single-stranded DNA by Apolipoprotein B Editing Complex Catalytic Subunit 1 (APOBEC1)* , 2003, Journal of Biological Chemistry.

[264]  F. Papavasiliou,et al.  AID Mediates Hypermutation by Deaminating Single Stranded DNA , 2003, The Journal of experimental medicine.

[265]  N. Kakazu,et al.  Constitutive Expression of AID Leads to Tumorigenesis , 2003, The Journal of experimental medicine.

[266]  W. Klapper,et al.  Expression of activation-induced cytidine deaminase in human B-cell non-Hodgkin lymphomas. , 2003, Blood.

[267]  F. Alt,et al.  Transcription-targeted DNA deamination by the AID antibody diversification enzyme , 2003, Nature.

[268]  M. Goodman,et al.  Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[269]  F. Drabløs,et al.  Uracil in DNA – occurrence, consequences and repair , 2002, Oncogene.

[270]  Reuben S Harris,et al.  RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. , 2002, Molecular cell.

[271]  D. Barnes,et al.  Immunoglobulin Isotype Switching Is Inhibited and Somatic Hypermutation Perturbed in UNG-Deficient Mice , 2002, Current Biology.

[272]  M. Malim,et al.  Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein , 2002, Nature.

[273]  M. Neuberger,et al.  AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification , 2002, Nature.

[274]  M. Neuberger,et al.  AID Is Essential for Immunoglobulin V Gene Conversion in a Cultured B Cell Line , 2002, Current Biology.

[275]  I. Dunham,et al.  An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. , 2002, Genomics.

[276]  T. Honjo,et al.  Activation-induced Deaminase (AID)-directed Hypermutation in the Immunoglobulin Sμ Region , 2002, The Journal of Experimental Medicine.

[277]  Riccardo Dalla-Favera,et al.  Mechanisms of chromosomal translocations in B cell lymphomas , 2001, Oncogene.

[278]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[279]  S. Paludan,et al.  Molecular Pathways in Virus-Induced Cytokine Production , 2001, Microbiology and Molecular Biology Reviews.

[280]  A. Fischer,et al.  Activation-Induced Cytidine Deaminase (AID) Deficiency Causes the Autosomal Recessive Form of the Hyper-IgM Syndrome (HIGM2) , 2000, Cell.

[281]  T. Honjo,et al.  Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme , 2000, Cell.

[282]  F. Buck,et al.  Purification and Molecular Cloning of a Novel Essential Component of the Apolipoprotein B mRNA Editing Enzyme-Complex* , 2000, The Journal of Biological Chemistry.

[283]  F. Hanaoka,et al.  Mechanisms of accurate translesion synthesis by human DNA polymerase η , 2000, The EMBO journal.

[284]  N. Sherman,et al.  Molecular Cloning of Apobec-1 Complementation Factor, a Novel RNA-Binding Protein Involved in the Editing of Apolipoprotein B mRNA , 2000, Molecular and Cellular Biology.

[285]  J. Butel,et al.  Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease. , 2000, Carcinogenesis.

[286]  C. Scheidereit,et al.  NF-kappaB and the innate immune response. , 2000, Current opinion in immunology.

[287]  R. Kucherlapati,et al.  Reduced Isotype Switching in Splenic B Cells from Mice Deficient in Mismatch Repair Enzymes , 1999, The Journal of experimental medicine.

[288]  I. Dunham,et al.  Psoriasis upregulated phorbolin-1 shares structural but not functional similarity to the mRNA-editing protein apobec-1. , 1999, The Journal of investigative dermatology.

[289]  T. Honjo,et al.  Specific Expression of Activation-induced Cytidine Deaminase (AID), a Novel Member of the RNA-editing Deaminase Family in Germinal Center B Cells* , 1999, The Journal of Biological Chemistry.

[290]  M. Neuberger,et al.  Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class‐switch recombination: parallels with somatic hypermutation , 1999, The EMBO journal.

[291]  M. Shlomchik,et al.  A Novel Mouse with B Cells but Lacking Serum Antibody Reveals an Antibody-independent Role for B Cells in Murine Lupus , 1999, The Journal of experimental medicine.

[292]  L. Pasqualucci,et al.  BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[293]  U. Storb,et al.  Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. , 1998, Science.

[294]  J. Borén,et al.  Low expression of the apolipoprotein B mRNA-editing transgene in mice reduces LDL levels but does not cause liver dysplasia or tumors. , 1998, Arteriosclerosis, thrombosis, and vascular biology.

[295]  R. Tarone,et al.  Increased Hypermutation at G and C Nucleotides in Immunoglobulin Variable Genes from Mice Deficient in the MSH2 Mismatch Repair Protein , 1998, The Journal of experimental medicine.

[296]  T. Innerarity,et al.  A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme. , 1997, Genes & development.

[297]  A. Bhagwat,et al.  Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[298]  K. Rajewsky Clonal selection and learning in the antibody system , 1996, Nature.

[299]  U. Storb,et al.  The molecular basis of somatic hypermutation of immunoglobulin genes. , 1996, Current opinion in immunology.

[300]  J. Borén,et al.  Biosynthesis of Apolipoprotein B48-containing Lipoproteins , 1996, The Journal of Biological Chemistry.

[301]  G R Skuse,et al.  The neurofibromatosis type I messenger RNA undergoes base-modification RNA editing. , 1996, Nucleic acids research.

[302]  J. Taylor,et al.  Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[303]  T. Rabbitts,et al.  Chromosomal translocations in human cancer , 1994, Nature.

[304]  R. L. Thompson,et al.  Evidence that the herpes simplex virus type 1 uracil DNA glycosylase is required for efficient viral replication and latency in the murine nervous system , 1994, Journal of virology.

[305]  J. Morrison,et al.  The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. , 1993, The Journal of biological chemistry.

[306]  J. Celis,et al.  Evidence for an altered protein kinase C (PKC) signaling pathway in psoriasis. , 1993, The Journal of investigative dermatology.

[307]  H. Greten,et al.  Apolipoprotein B mRNA editing in 12 different mammalian species: hepatic expression is reflected in low concentrations of apoB-containing plasma lipoproteins. , 1993, Journal of lipid research.

[308]  C. Burant,et al.  Molecular cloning of an apolipoprotein B messenger RNA editing protein. , 1993, Science.

[309]  T. Lindahl Instability and decay of the primary structure of DNA , 1993, Nature.

[310]  D. Pisetsky,et al.  The influence of DNA structure on the in vitro stimulation of murine lymphocytes by natural and synthetic polynucleotide antigens. , 1993, Cellular immunology.

[311]  G. Hertz,et al.  DNA sequences at immunoglobulin switch region recombination sites. , 1993, Nucleic acids research.

[312]  N A Kolchanov,et al.  Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. , 1992, Biochimica et biophysica acta.

[313]  M. Potter,et al.  Plasmacytomagenesis in mice: model of neoplastic development dependent upon chromosomal translocations. , 1992, Carcinogenesis.

[314]  J. Scott,et al.  Apolipoprotein B mRNA editing: a new tier for the control of gene expression. , 1992, Trends in biochemical sciences.

[315]  Z W Gu,et al.  Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. , 1987, Science.

[316]  J. Glickman,et al.  Apolipoprotein B synthesis by human liver and intestine in vitro. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[317]  P. V. von Hippel,et al.  Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. , 1981, Biochemistry.

[318]  J. Kane,et al.  Heterogeneity of apolipoprotein B: isolation of a new species from human chylomicrons. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[319]  F. Burnet A modification of jerne's theory of antibody production using the concept of clonal selection , 1976, CA: a cancer journal for clinicians.

[320]  G. Getz,et al.  An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers , 2015, Nature Genetics.

[321]  Uttiya Basu,et al.  RNA Exosome Regulates AID DNA Mutator Activity in the B Cell Genome. , 2015, Advances in immunology.

[322]  Chung-Pei Lee,et al.  Uracil DNA Glycosylase BKRF3 Contributes to EBV DNA Replication , 2014 .

[323]  C. Schiffer,et al.  Methyl-and Normal-Cytosine Deamination by the Foreign DNA Restriction Enzyme APOBEC 3 A , 2012 .

[324]  M. Nussenzweig,et al.  Activation-induced cytidine deaminase in antibody diversification and chromosome translocation. , 2012, Advances in cancer research.

[325]  Y. Chiu Biochemical fractionation and purification of high-molecular-mass APOBEC3G complexes. , 2011, Methods in molecular biology.

[326]  M. Nussenzweig,et al.  Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes , 2011, Nature Immunology.

[327]  D. Schatz,et al.  Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions , 2011, Nature Immunology.

[328]  Jialing Huang,et al.  APOBEC3G upregulation by alpha interferon restricts human immunodeficiency virus type 1 infection in human peripheral plasmacytoid dendritic cells. , 2008, The Journal of general virology.

[329]  L. Pasqualucci,et al.  AID is required for germinal center–derived lymphomagenesis , 2008, Nature Genetics.

[330]  D. Erie,et al.  Activation-induced deaminase, AID, is catalytically active as a monomer on single-stranded DNA. , 2008, DNA repair.

[331]  B. Ames,et al.  An assay for uracil in human DNA at baseline: effect of marginal vitamin B6 deficiency. , 2008, Analytical biochemistry.

[332]  T. Honjo,et al.  Role of AID in tumorigenesis. , 2007, Advances in immunology.

[333]  A. Koito,et al.  Human T cell leukemia virus type I is resistant to the antiviral effects of APOBEC3. , 2007, Journal of virological methods.

[334]  H. Seno,et al.  Anti-viral protein APOBEC3G is induced by interferon-alpha stimulation in human hepatocytes. , 2006, Biochemical and biophysical research communications.

[335]  S. Wahl,et al.  a defensive maneuver underlying interferon-induced anti-HIV-1 activity , 2006 .

[336]  Jialing Huang,et al.  CD 4 T Cells 1 Activity of APOBEC 3 G in Resting Primary Anti-Human Immunodeficiency Virus Type Alpha Interferon Potently Enhances the , 2006 .

[337]  S. Wain-Hobson,et al.  Recovery of APOBEC3-edited human immunodeficiency virus G->A hypermutants by differential DNA denaturation PCR. , 2005, The Journal of general virology.

[338]  A. Fischer,et al.  Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to Activation-Induced Cytidine Deaminase deficiency. , 2004, Clinical immunology.

[339]  H. Ploegh,et al.  Predominant Autoantibody Production by Early Human B Cell Precursors , 2003 .

[340]  U. Storb,et al.  Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. , 1996, Immunity.

[341]  C. Lawrence,et al.  DNA polymerase zeta and the control of DNA damage induced mutagenesis in eukaryotes. , 1996, Cancer surveys.

[342]  A. Goldsobel,et al.  Allergy and immunology. , 1995, The Western journal of medicine.

[343]  Xianghui Yu,et al.  Induction of APOBEC 3 G Ubiquitination and Degradation by an HIV-1 Vif-Cul 5-SCF Complex , 2022 .