Modified Villain formulation of Abelian Chern-Simons theory

We formulate $U(1)_k$ Chern-Simons theory on a Euclidean spacetime lattice using the modified Villain approach. Various familiar aspects of continuum Chern-Simons theory such as level quantization, framing, the discrete 1-form symmetry and its 't Hooft anomaly, as well as the electric charge of monopole operators are manifest in our construction. The key technical ingredient is the cup product and its higher generalizations on the (hyper-)cubic lattice, which recently appeared in the literature. All unframed Wilson loops are projected out by a peculiar subsystem symmetry, leaving topological, ribbon-like Wilson loops which have the correct correlation functions and topological spins expected from the continuum theory. Our action can be obtained from a new definition of the theta term in four dimensions which improves upon previous constructions within the modified Villain approach. This bulk action coupled to background fields for the 1-form symmetry is given by the Pontryagin square, which provides anomaly inflow directly on the lattice.

[1]  T. Sulejmanpasic,et al.  Lattice quantum Villain Hamiltonians: compact scalars, U(1) gauge theories, fracton models and quantum Ising model dualities , 2022, Journal of High Energy Physics.

[2]  N. Seiberg,et al.  Lieb-Schultz-Mattis, Luttinger, and 't Hooft - anomaly matching in lattice systems , 2022, SciPost Physics.

[3]  Morishige Yoneda Equivalence of the modified Villain formulation and the dual Hamiltonian method in the duality of the XY-plaquette model , 2022, 2211.01632.

[4]  C. Gattringer,et al.  Massless Schwinger model with a 4-fermi-interaction at topological angle $\theta = \pi$ , 2022, Proceedings of The 39th International Symposium on Lattice Field Theory — PoS(LATTICE2022).

[5]  R. Argurio,et al.  Continuous generalized symmetries in three dimensions , 2022, Journal of High Energy Physics.

[6]  Ho Tat Lam,et al.  Non-invertible Condensation, Duality, and Triality Defects in 3+1 Dimensions , 2022, Communications in Mathematical Physics.

[7]  C. Gattringer,et al.  Phase structure of self-dual lattice gauge theories in 4d , 2022, Journal of High Energy Physics.

[8]  C. Gattringer,et al.  Self-dual U(1) lattice field theory with a θ-term , 2022, Journal of High Energy Physics.

[9]  T. Banks,et al.  Lattice BF theory, dumbbells, and composite fermions , 2021, Nuclear Physics B.

[10]  Maissam Barkeshli,et al.  (3+1)D path integral state sums on curved U(1) bundles and U(1) anomalies of (2+1)D topological phases , 2021, 2111.14827.

[11]  C. Gattringer,et al.  Numerical simulation of self-dual U(1) lattice field theory with electric and magnetic matter , 2021, Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021).

[12]  Yu-An Chen,et al.  Exactly solvable lattice Hamiltonians and gravitational anomalies , 2021, SciPost Physics.

[13]  Djordje Radicevic,et al.  Confinement and Flux Attachment , 2021, 2110.10169.

[14]  Bingnan Zhang,et al.  Abelian Chern-Simons gauge theory on the lattice , 2021, Physical Review D.

[15]  Yu-An Chen,et al.  Higher cup products on hypercubic lattices: application to lattice models of topological phases , 2021, 2106.05274.

[16]  Ho Tat Lam,et al.  A modified Villain formulation of fractons and other exotic theories , 2021, Journal of Mathematical Physics.

[17]  T. Sulejmanpasic Ising model as a U(1) lattice gauge theory with a θ -term , 2021, Physical Review D.

[18]  X. Wen,et al.  Compact U^{k}(1) Chern-Simons Theory as a Local Bosonic Lattice Model with Exact Discrete 1-Symmetries. , 2021, Physical review letters.

[19]  Jing-Yuan Chen Abelian Topological Order on Lattice Enriched with Electromagnetic Background , 2021 .

[20]  T. D. Brennan,et al.  Axions, higher-groups, and emergent symmetry , 2020, Journal of High Energy Physics.

[21]  Y. Hidaka,et al.  Global 3-group symmetry and ’t Hooft anomalies in axion electrodynamics , 2020, Journal of High Energy Physics.

[22]  S. Tata Geometrically Interpreting Higher Cup Products, and Application to Combinatorial Pin Structures , 2020, 2008.10170.

[23]  C. Gattringer,et al.  First-Principles Simulations of 1+1D Quantum Field Theories at θ=π and Spin Chains. , 2020, Physical review letters.

[24]  Ryan Thorngren Topological quantum field theory, symmetry breaking, and finite gauge theory in 3+1D , 2020 .

[25]  C. Gattringer,et al.  Topological terms in abelian lattice field theories , 2019, 1912.11685.

[26]  Y. Tanizaki,et al.  Modified instanton sum in QCD and higher-groups , 2019, Journal of High Energy Physics.

[27]  R. Gamkrelidze Mappings of a Three-Dimensional Sphere into an n-Dimensional Complex , 2019, L. S. Pontryagin Selected Works.

[28]  Yu-An Chen Exact bosonization in arbitrary dimensions , 2019, Physical Review Research.

[29]  C. Gattringer,et al.  Topology and index theorem with a generalized Villain lattice action – a test in 2d , 2019, Physics Letters B.

[30]  C. Gattringer,et al.  Abelian gauge theories on the lattice: θ-Terms and compact gauge theory with(out) monopoles , 2019, Nuclear Physics B.

[31]  Ho Tat Lam,et al.  Comments on one-form global symmetries and their gauging in 3d and 4d , 2018, SciPost Physics.

[32]  C. Gattringer,et al.  The critical endpoint in the 2-d U(1) gauge-Higgs model at topological angle $\theta=\pi$ , 2018, Proceedings of The 36th Annual International Symposium on Lattice Field Theory — PoS(LATTICE2018).

[33]  Yu-An Chen,et al.  Bosonization in three spatial dimensions and a 2-form gauge theory , 2018, Physical Review B.

[34]  K. Intriligator,et al.  Exploring 2-group global symmetries , 2018, Journal of High Energy Physics.

[35]  Yu-An Chen,et al.  Exact bosonization in two spatial dimensions and a new class of lattice gauge theories , 2017, Annals of Physics.

[36]  N. Vlasii,et al.  From Doubled Chern-Simons-Maxwell Lattice Gauge Theory to Extensions of the Toric Code , 2015, 1503.07023.

[37]  K. Sun,et al.  Discretized Abelian Chern-Simons gauge theory on arbitrary graphs , 2015, 1502.00641.

[38]  Nathan Seiberg,et al.  Generalized global symmetries , 2014, 1412.5148.

[39]  A. Kapustin,et al.  Anomalies of discrete symmetries in various dimensions and group cohomology , 2014, 1404.3230.

[40]  A. Kapustin,et al.  Coupling a QFT to a TQFT and duality , 2014, 1401.0740.

[41]  A. Kapustin,et al.  Topological Field Theory on a Lattice, Discrete Theta-Angles and Confinement , 2013, 1308.2926.

[42]  G. Festuccia,et al.  Comments on Chern-Simons contact terms in three dimensions , 2012, 1206.5218.

[43]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[44]  Pasquale Sodano,et al.  A Ginsparg-Wilson approach to lattice Chern-Simons theory , 2003, hep-lat/0305006.

[45]  Pasquale Sodano,et al.  Chern-Simons theory on the lattice , 2002, hep-lat/0207010.

[46]  Pasquale Sodano,et al.  On pure lattice Chern-Simons gauge theories , 2000, hep-th/0004203.

[47]  M. Luscher Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation , 1998, hep-lat/9802011.

[48]  H. Neuberger Exactly massless quarks on the lattice , 1997, hep-lat/9707022.

[49]  D. Adams A DOUBLED DISCRETIZATION OF ABELIAN CHERN-SIMONS THEORY , 1997, hep-th/9704150.

[50]  D. Adams R-torsion and linking numbers from simplicial abelian gauge theories , 1996, hep-th/9612009.

[51]  Sodano,et al.  Topological excitations in compact Maxwell-Chern-Simons theory. , 1993, Physical review letters.

[52]  D. Eliezer,et al.  Anyonization of lattice Chern-Simons theory , 1992 .

[53]  D. Eliezer,et al.  Intersection forms and the geometry of lattice Chern-Simons theory , 1992, hep-th/9204048.

[54]  L. Susskind,et al.  A lattice model of fractional statistics , 1991 .

[55]  D. Gross,et al.  One-dimensional string theory on a circle , 1990 .

[56]  A. Kavalov,et al.  The lattice construction for abelian Chern-Simons gauge theory , 1990 .

[57]  V. Müller Intermediate statistics in two space dimensions in a lattice-regularized Hamiltonian quantum field theory , 1990 .

[58]  J. Harvey,et al.  The Chern-Simons term versus the monopole , 1989 .

[59]  M. Lüscher Bosonization in (2+1)-Dimensions , 1989 .

[60]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[61]  J. Fröhlich,et al.  Quantum field theories of vortices and anyons , 1989 .

[62]  A. Polyakov FERMI-BOSE TRANSMUTATIONS INDUCED BY GAUGE FIELDS , 1988 .

[63]  Pisarski Monopoles in topologically massive gauge theories. , 1986, Physical review. D, Particles and fields.

[64]  N. Seiberg Analytic study of θ vacua on the lattice , 1984 .

[65]  Kenneth G. Wilson,et al.  A Remnant of Chiral Symmetry on the Lattice , 1982 .

[66]  J. Cardy,et al.  Phase structure of Zp models in the presence of a θ parameter , 1982 .

[67]  J. Cardy Duality and the θ parameter in Abelian lattice models , 1982 .

[68]  L. Mizrachi COMMENTS ON 'DYONS OF CHARGE e theta / 2 pi' , 1982 .

[69]  B. Halperin,et al.  Phase Transition in a Lattice Model of Superconductivity , 1981 .

[70]  G. Hooft Topology of the gauge condition and new confinement phases in non-abelian gauge theories , 1981 .

[71]  H. Nielsen,et al.  A no-go theorem for regularizing chiral fermions , 1981 .

[72]  E. Witten Dyons of charge eθ/2π , 1979 .

[73]  M. Peskin Mandelstam 't Hooft Duality in Abelian Lattice Models , 1978 .

[74]  J. Villain Theory of one- and two-dimensional magnets with an easy magnetization plane. II. The planar, classical, two-dimensional magnet , 1975 .

[75]  J. Whitehead On simply connected, 4-dimensional polyhedra , 1949 .

[76]  N. Steenrod,et al.  Products of Cocycles and Extensions of Mappings , 1947 .

[77]  M. Luscher Bosonization in 2 + 1 Dimensions , 2022 .