Decoupling of soil nutrient cycles as a function of aridity in global drylands

[1]  Bill Shipley,et al.  Cause and Correlation in Biology: A User''s Guide to Path Analysis , 2016 .

[2]  Q. Fu,et al.  Expansion of global drylands under a warming climate , 2013 .

[3]  S. Vicente‐Serrano,et al.  Dryness is accelerating degradation of vulnerable shrublands in semiarid Mediterranean environments , 2012 .

[4]  Jordi Sardans,et al.  The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives , 2012 .

[5]  Xuewen Huang,et al.  Plant Species Richness and Ecosystem Multifunctionality in Global Drylands , 2012, Science.

[6]  Josep Peñuelas,et al.  The human‐induced imbalance between C, N and P in Earth's life system , 2012 .

[7]  D. Manning,et al.  Persistence of soil organic matter as an ecosystem property , 2011, Nature.

[8]  R. Dahlgren,et al.  Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock , 2011, Nature.

[9]  M. Delgado‐Baquerizo,et al.  Dissolved Organic Nitrogen in Mediterranean Ecosystems , 2011 .

[10]  S. Frey,et al.  Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems , 2011 .

[11]  F. Maestre,et al.  Interactive Effects of Three Ecosystem Engineers on Infiltration in a Semi-Arid Mediterranean Grassland , 2010, Ecosystems.

[12]  Alan J. Franzluebbers,et al.  Principles of Soil Conservation and Management , 2010 .

[13]  David S Schimel,et al.  Drylands in the Earth System , 2010, Science.

[14]  S. Carpenter,et al.  Early-warning signals for critical transitions , 2009, Nature.

[15]  Rattan Lal,et al.  Principles of Soil Conservation and Management , 2008 .

[16]  F. Giorgi,et al.  Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model , 2008 .

[17]  Peter E. Thornton,et al.  Influence of carbon‐nitrogen cycle coupling on land model response to CO2 fertilization and climate variability , 2007 .

[18]  G. Okin,et al.  Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA , 2007 .

[19]  T. Downing,et al.  Global Desertification: Building a Science for Dryland Development , 2007, Science.

[20]  P. Johnson Governing Global Desertification: Linking Environmental Degradation, Poverty and Participation , 2006 .

[21]  H. Geist,et al.  The Causes and Progression of Desertification , 2005 .

[22]  Peter M. Vitousek,et al.  Nutrient Cycling and Limitation: Hawai'i as a Model System , 2004 .

[23]  Osvaldo E. Sala,et al.  Hierarchy of responses to resource pulses in arid and semi-arid ecosystems , 2004, Oecologia.

[24]  J. Schimel,et al.  NITROGEN MINERALIZATION: CHALLENGES OF A CHANGING PARADIGM , 2004 .

[25]  A. Porporato,et al.  Water pulses and biogeochemical cycles in arid and semiarid ecosystems , 2004, Oecologia.

[26]  F. Maestre,et al.  POSITIVE, NEGATIVE, AND NET EFFECTS IN GRASS–SHRUB INTERACTIONS IN MEDITERRANEAN SEMIARID GRASSLANDS , 2003 .

[27]  Todd Tietjen,et al.  Extracellular enzyme-clay mineral complexes: Enzyme adsorption, alteration of enzyme activity, and protection from photodegradation , 2003, Aquatic Ecology.

[28]  F. Chapin,et al.  Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems , 2003 .

[29]  N. Grimm,et al.  Towards an ecological understanding of biological nitrogen fixation , 2002 .

[30]  V. Vallejo,et al.  Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach , 2002 .

[31]  W. Whitford Ecology of Desert Systems , 2002 .

[32]  F. Maestre,et al.  POTENTIAL FOR USING FACILITATION BY GRASSES TO ESTABLISH SHRUBS ON A SEMIARID DEGRADED STEPPE , 2001 .

[33]  P. Vitousek,et al.  Regulation of soil phosphatase and chitinase activityby N and P availability , 2000 .

[34]  J. Reynolds,et al.  Impact of drought on desert shrubs : Effects of seasonality and degree of resource island development , 1999 .

[35]  E. Paul,et al.  Soil microbiology and biochemistry. , 1998 .

[36]  F. Niell,et al.  Phosphorus transformations along a soil/vegetation series of fire-prone, dolomitic, semi-arid shrublands of southern Spain Soil P and Mediterranean shrubland dynamic , 1997 .

[37]  Artemi Cerdà,et al.  The effect of patchy distribution ofStipa tenacissimaL. on runoff and erosion , 1997 .

[38]  J. M. Anderson,et al.  Tropical Soil Biology and Fertility: A Handbook of Methods , 1994 .

[39]  M. R. Carter,et al.  Soil Sampling and Methods of Analysis , 1993 .

[40]  W. Schlesinger Biogeochemistry: An Analysis of Global Change , 1991 .

[41]  I. Baillie,et al.  Tropical Soil Biology and Fertility: A Handbook of Methods. , 1990 .

[42]  J F Reynolds,et al.  Biological Feedbacks in Global Desertification , 1990, Science.

[43]  J. Schoenau,et al.  Forms and cycling of phosphorus in prairie and boreal forest soils , 1989 .

[44]  K. Lajtha,et al.  FACTORS AFFECTING PHOSPHATE SORPTION AND PHOSPHATE RETENTION IN A DESERT ECOSYSTEM , 1988 .

[45]  J. Oades,et al.  The retention of organic matter in soils , 1988 .

[46]  J. Stewart,et al.  The influence of topography on the distribution of organic and inorganic soil phosphorus across a narrow environmental gradient , 1985 .

[47]  W. McGill,et al.  Comparative aspects of cycling of organic C, N, S and P through soil organic matter , 1981 .

[48]  C. Cole,et al.  TRANSFORMATIONS OF ORGANIC PHOSPHORUS SUBSTRATES IN SOILS AS EVALUATED BY NaHCO3 EXTRACTION , 1978 .

[49]  K. Marshall Clay Mineralogy in Relation to Survival of Soil Bacteria , 1975 .

[50]  G. Stotzky Activity, ecology, and population dynamics of microorganisms in soil. , 1972, CRC critical reviews in microbiology.

[51]  J. M. Bremner,et al.  Use of p-nitrophenyl phosphate for assay of soil phosphatase activity , 1969 .

[52]  R. H. Bray,et al.  DETERMINATION OF TOTAL, ORGANIC, AND AVAILABLE FORMS OF PHOSPHORUS IN SOILS , 1945 .

[53]  A. Dai Increasing drought under global warming in observations and models , 2013 .

[54]  I. Burke,et al.  Carbon and Nitrogen Decoupling Under an 11-Year Drought in the Shortgrass Steppe , 2012, Ecosystems.

[55]  M. Guo Soil Sampling and Methods of Analysis , 2009 .

[56]  E. Kandeler PHYSIOLOGICAL AND BIOCHEMICAL METHODS FOR STUDYING SOIL BIOTA AND THEIR FUNCTION , 2007 .

[57]  Antonio Trabucco,et al.  Carbon, land and water: a global analysis of the hydrologic dimensions of climate change mitigation through afforestation / reforestation , 2006 .

[58]  E. Ranst,et al.  Introduction to Soil Science: Soils of the Tropics , 2005 .

[59]  Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/joc.1276 VERY HIGH RESOLUTION INTERPOLATED CLIMATE SURFACES FOR GLOBAL LAND AREAS , 2005 .

[60]  K. Schermelleh-Engel,et al.  Evaluating the Fit of Structural Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures. , 2003 .

[61]  R. Dick,et al.  Enzymes in the environment , 2002 .

[62]  W. Schlesinger,et al.  Biological and geochemical controls on phosphorus fractions in semiarid soils , 2001 .

[63]  W. Schlesinger,et al.  A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems , 1995 .

[64]  B. Salem,et al.  Arid zone forestry: a guide for field technicians. , 1989 .

[65]  N. Sugiura Further analysts of the data by akaike' s information criterion and the finite corrections , 1978 .

[66]  J. Syers,et al.  The fate of phosphorus during pedogenesis , 1976 .

[67]  S. R. Olsen,et al.  Estimation of available phosphorus in soils by extraction with sodium bicarbonate , 1954 .

[68]  W. Parton,et al.  University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository , 2022 .