Nanodomain Engineering in Ferroelectric Capacitors with Graphene Electrodes.

Polarization switching in ferroelectric capacitors is typically realized by application of an electrical bias to the capacitor electrodes and occurs via a complex process of domain structure reorganization. As the domain evolution in real devices is governed by the distribution of the nucleation centers, obtaining a domain structure of a desired configuration by electrical pulsing is challenging, if not impossible. Recent discovery of polarization reversal via the flexoelectric effect has opened a possibility for deterministic control of polarization in ferroelectric capacitors. In this paper, we demonstrate mechanical writing of arbitrary-shaped nanoscale domains in thin-film ferroelectric capacitors with graphene electrodes facilitated by a strain gradient induced by a tip of an atomic force microscope (AFM). A phase-field modeling prediction of a strong effect of graphene thickness on the threshold load required to initiate mechanical switching has been confirmed experimentally. Deliberate voltage-free domain writing represents a viable approach for development of functional devices based on domain topology and electronic properties of the domains and domain walls.

[1]  J. Grollier,et al.  Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions. , 2013, ACS nano.

[2]  Robert Roth,et al.  Strain induced low mechanical switching force in ultrathin PbZr0.2Ti0.8O3 films , 2014 .

[3]  John C. Bean,et al.  MEASUREMENT OF THE BANDGAP OF GexSi1−x/Si STRAINED-LAYER HETEROSTRUCTURES , 1985 .

[4]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .

[5]  A. Sinitskii,et al.  Ferroelectric tunnel junctions with graphene electrodes , 2014, Nature Communications.

[6]  A. Gruverman,et al.  Polarization relaxation kinetics in ultrathin ferroelectric capacitors , 2013 .

[7]  A. Tagantsev,et al.  Controlling domain wall motion in ferroelectric thin films. , 2015, Nature nanotechnology.

[8]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[9]  A. Fischer-Cripps,et al.  Introduction to Contact Mechanics , 2000 .

[10]  Shenyang Y. Hu,et al.  Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films , 2002 .

[11]  Yijia Gu,et al.  Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity , 2015 .

[12]  J. Hlinka,et al.  Phenomenological model of a 90° domain wall inBaTiO3-type ferroelectrics , 2006 .

[13]  A. Gruverman,et al.  Nanomechanics of flexoelectric switching , 2015 .

[14]  V. Gopalan,et al.  Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films , 2004, Science.

[15]  T. Giamarchi,et al.  Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. , 2004, Physical review letters.

[16]  A. Tagantsev,et al.  Finite-temperature flexoelectricity in ferroelectric thin films from first principles , 2012 .

[17]  Sergei V. Kalinin,et al.  Local polarization dynamics in ferroelectric materials , 2010 .

[18]  Zi-kui Liu,et al.  Phase-field simulations of thickness-dependent domain stability in PbTiO3 thin films , 2012 .

[19]  Technology,et al.  Domain wall creep in epitaxial ferroelectric Pb(Zr(0.2)Ti(0.08)O(3) thin films. , 2002, Physical review letters.

[20]  Sergei V. Kalinin,et al.  Conduction at domain walls in oxide multiferroics. , 2009, Nature materials.

[21]  Sergei V. Kalinin,et al.  Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics , 2006 .

[22]  E. Tsymbal,et al.  Ferroelectric tunnel memristor. , 2012, Nano letters.

[23]  A. Gruverman,et al.  Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale. , 2008, Physical review letters.

[24]  James F. Scott,et al.  Domain wall nanoelectronics , 2012 .

[25]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[26]  A. Gruverman,et al.  Supplementary Materials for Mechanical Writing of Ferroelectric Polarization , 2012 .

[27]  T. Giamarchi,et al.  Domain Wall Roughness in Epitaxial Ferroelectric PbZr 0 . 2 Ti 0 . 8 O 3 Thin Films , 2017 .

[28]  R. People,et al.  Erratum: Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures [Appl. Phys. Lett. 47, 322 (1985)] , 1986 .

[29]  Ping Wu,et al.  Temperature-pressure phase diagram and ferroelectric properties of BaTiO3 single crystal based on a modified Landau potential , 2010 .

[30]  Alexei Gruverman,et al.  Nanoscale ferroelectrics: processing, characterization and future trends , 2006 .

[31]  X. Pan,et al.  Evolution of dislocation arrays in epitaxial BaTiO3 thin films grown on (100) SrTiO3 , 2004 .

[32]  Sergei V. Kalinin,et al.  Piezoresponse Force Microscopy: A Window into Electromechanical Behavior at the Nanoscale , 2009 .

[33]  E. Tsymbal,et al.  Electromechanics of Ferroelectric‐Like Behavior of LaAlO3 Thin Films , 2015 .

[34]  W. F. Peck,et al.  Single-Crystal Epitaxial Thin Films of the Isotropic Metallic Oxides Sr1–xCaxRuO3 (0 ≤ x ≤ 1) , 1992, Science.

[35]  S. Gariglio,et al.  Ferroelectric Materials: Conduction at Domain Walls in Insulating Pb(Zr0.2Ti0.8)O3 Thin Films (Adv. Mater. 45/2011) , 2011 .

[36]  Tae Won Noh,et al.  Polarization Relaxation Induced by a Depolarization Field in Ultrathin Ferroelectric BaTiO 3 Capacitors , 2005 .

[37]  V. Gopalan,et al.  Flexoelectricity and Ferroelectric Domain Wall Structures: Phase-Field Modeling and DFT Calculations , 2014 .

[38]  I. Kunishima,et al.  Spatial variations in local switching parameters of ferroelectric random access memory capacitors , 2009 .

[39]  Chert,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 2004 .

[40]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.