The Rostromedial Tegmental Nucleus (RMTg), a GABAergic Afferent to Midbrain Dopamine Neurons, Encodes Aversive Stimuli and Inhibits Motor Responses

Separate studies have implicated the lateral habenula (LHb) or amygdala-related regions in processing aversive stimuli, but their relationships to each other and to appetitive motivational systems are poorly understood. We show that neurons in the recently identified GABAergic rostromedial tegmental nucleus (RMTg), which receive a major LHb input, project heavily to midbrain dopamine neurons, and show phasic activations and/or Fos induction after aversive stimuli (footshocks, shock-predictive cues, food deprivation, or reward omission) and inhibitions after rewards or reward-predictive stimuli. RMTg lesions markedly reduce passive fear behaviors (freezing, open-arm avoidance) dependent on the extended amygdala, periaqueductal gray, or septum, all regions that project directly to the RMTg. In contrast, RMTg lesions spare or enhance active fear responses (treading, escape) in these same paradigms. These findings suggest that aversive inputs from widespread brain regions and stimulus modalities converge onto the RMTg, which opposes reward and motor-activating functions of midbrain dopamine neurons.

[1]  Joseph E LeDoux,et al.  Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  N. Swerdlow,et al.  Pituitary-adrenal axis responses to acute amphetamine in the rat , 1993, Pharmacology Biochemistry and Behavior.

[3]  J. Tepper,et al.  GABAergic control of substantia nigra dopaminergic neurons. , 2007, Progress in brain research.

[4]  J. Konorski Integrative activity of the brain : an interdisciplinary approach , 1967 .

[5]  M. Fendt,et al.  Temporary Inactivation of the Bed Nucleus of the Stria Terminalis But Not of the Amygdala Blocks Freezing Induced by Trimethylthiazoline, a Component of Fox Feces , 2003, The Journal of Neuroscience.

[6]  R. Trifunovic,et al.  Nonserotonergic control of nucleus accumbens dopamine metabolism by the median raphe nucleus , 1992, Pharmacology Biochemistry and Behavior.

[7]  R. Wightman,et al.  Subsecond dopamine release promotes cocaine seeking , 2003, Nature.

[8]  D. Treit,et al.  Dissociations among the anxiolytic effects of septal, hippocampal, and amygdaloid lesions. , 1997, Behavioral neuroscience.

[9]  Regulation of contextual conditioning by the median raphe nucleus , 1998, Brain Research.

[10]  W. Schultz,et al.  Importance of unpredictability for reward responses in primate dopamine neurons. , 1994, Journal of neurophysiology.

[11]  R. Joosten,et al.  Dopamine and noradrenaline efflux in the rat prefrontal cortex after classical aversive conditioning to an auditory cue , 2001, The European journal of neuroscience.

[12]  Joseph E LeDoux,et al.  Septal lesions potentiate freezing behavior to contextual but not to phasic conditioned stimuli in rats. , 1995, Behavioral neuroscience.

[13]  S. Ikemoto,et al.  Primary Reinforcing Effects of Nicotine Are Triggered from Multiple Regions Both Inside and Outside the Ventral Tegmental Area , 2006, The Journal of Neuroscience.

[14]  G. Holstege Descending motor pathways and the spinal motor system: limbic and non-limbic components. , 1991, Progress in brain research.

[15]  Joseph E LeDoux,et al.  Partial disruption of fear conditioning in rats with unilateral amygdala damage: correspondence with unilateral temporal lobectomy in humans. , 1996, Behavioral neuroscience.

[16]  S. Ochs Integrative Activity of the Brain: An Interdisciplinary Approach , 1968 .

[17]  R. Solomon,et al.  An Opponent-Process Theory of Motivation , 1978 .

[18]  W. Schultz,et al.  Adaptive Coding of Reward Value by Dopamine Neurons , 2005, Science.

[19]  M. Trimble,et al.  The Lateral Habenula: No Longer Neglected , 2008, CNS Spectrums.

[20]  H. Fields Understanding How Opioids Contribute to Reward and Analgesia , 2007, Regional Anesthesia & Pain Medicine.

[21]  P. Veinante,et al.  Afferents to the GABAergic tail of the ventral tegmental area in the rat , 2009, The Journal of comparative neurology.

[22]  I. Tracey,et al.  A common neurobiology for pain and pleasure , 2008, Nature Reviews Neuroscience.

[23]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[24]  P. Redgrave,et al.  Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat , 2006, Neuroscience.

[25]  W. Nauta,et al.  Efferent connections of the habenular nuclei in the rat , 1979, The Journal of comparative neurology.

[26]  M. Walton,et al.  Calculating utility: preclinical evidence for cost–benefit analysis by mesolimbic dopamine , 2007, Psychopharmacology.

[27]  Okihide Hikosaka,et al.  Habenula: Crossroad between the Basal Ganglia and the Limbic System , 2008, The Journal of Neuroscience.

[28]  K. Berridge,et al.  Fear and Feeding in the Nucleus Accumbens Shell: Rostrocaudal Segregation of GABA-Elicited Defensive Behavior Versus Eating Behavior , 2001, The Journal of Neuroscience.

[29]  K. Wilcox,et al.  Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  S. J. Shammah-Lagnado,et al.  Organization of ventral tegmental area projections to the ventral tegmental area–nigral complex in the rat , 2008, Neuroscience.

[31]  W. Schultz Multiple dopamine functions at different time courses. , 2007, Annual review of neuroscience.

[32]  Jerald D. Kralik,et al.  Techniques for long-term multisite neuronal ensemble recordings in behaving animals. , 2001, Methods.

[33]  J. Hollerman,et al.  Dopamine neurons report an error in the temporal prediction of reward during learning , 1998, Nature Neuroscience.

[34]  K. Ressler,et al.  Lesions of the habenula produce stress- and dopamine-dependent alterations in prepulse inhibition and locomotion , 2006, Brain Research.

[35]  O. Hikosaka,et al.  Representation of negative motivational value in the primate lateral habenula , 2009, Nature Neuroscience.

[36]  M. Marinelli,et al.  Prominent Activation of Brainstem and Pallidal Afferents of the Ventral Tegmental Area by Cocaine , 2008, Neuropsychopharmacology.

[37]  Joseph J. Paton,et al.  The primate amygdala represents the positive and negative value of visual stimuli during learning , 2006, Nature.

[38]  Deanna L. Wallace,et al.  ΔFosB accumulates in a GABAergic cell population in the posterior tail of the ventral tegmental area after psychostimulant treatment , 2005, The European journal of neuroscience.

[39]  James M. Murphy,et al.  Self-infusion of GABA(A) antagonists directly into the ventral tegmental area and adjacent regions. , 1997, Behavioral Neuroscience.

[40]  R. Solomon,et al.  An opponent-process theory of motivation. I. Temporal dynamics of affect. , 1974, Psychological review.

[41]  S. Geisler,et al.  Afferents of the ventral tegmental area in the rat‐anatomical substratum for integrative functions , 2005, The Journal of comparative neurology.

[42]  T. Jhou,et al.  The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta , 2009, The Journal of comparative neurology.

[43]  R. Wise,et al.  Rewarding Effects of the Cholinergic Agents Carbachol and Neostigmine in the Posterior Ventral Tegmental Area , 2002, The Journal of Neuroscience.

[44]  I. Q. Wishaw,et al.  THE BEHAVIOR OF THE LABORATORY RAT A Handbook with Tests , 2004 .

[45]  Elyssa B. Margolis,et al.  Kappa opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M. Murray,et al.  Lesion of the habenular efferent pathway produces anxiety and locomotor hyperactivity in rats: a comparison of the effects of neonatal and adult lesions , 1996, Behavioural Brain Research.

[47]  S. Ikemoto Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex , 2007, Brain Research Reviews.

[48]  Gert Holstege,et al.  Chapter 1 The emotional motor system , 1996 .

[49]  G. Holstege,et al.  Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat , 1978, Experimental Brain Research.

[50]  M. Brandão,et al.  Activation of somatodendritic 5-HT1A autoreceptors in the median raphe nucleus disrupts the contextual conditioning in rats , 2001, Behavioural Brain Research.

[51]  S. Ikemoto,et al.  The midbrain raphe nuclei mediate primary reinforcement via GABAA receptors , 2007, The European journal of neuroscience.

[52]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[53]  D. S. Zahm,et al.  Glutamatergic Afferents of the Ventral Tegmental Area in the Rat , 2007, The Journal of Neuroscience.

[54]  R. Wise,et al.  Rewarding and Psychomotor Stimulant Effects of Endomorphin-1: Anteroposterior Differences within the Ventral Tegmental Area and Lack of Effect in Nucleus Accumbens , 2002, The Journal of Neuroscience.

[55]  J. Bolam,et al.  Uniform Inhibition of Dopamine Neurons in the Ventral Tegmental Area by Aversive Stimuli , 2004, Science.

[56]  P. Kelly,et al.  Bilateral Lesions of the Habenula Induce Attentional Disturbances in Rats , 2005, Neuropsychopharmacology.

[57]  G. McNally,et al.  Predicting danger: the nature, consequences, and neural mechanisms of predictive fear learning. , 2006, Learning & memory.

[58]  G. Mogenson,et al.  Effects of peripheral stimulation on the activity of neurons in the ventral tegmental area, substantia nigra and midbrain reticular formation of rats , 1982, Brain Research Bulletin.

[59]  W. Schultz,et al.  Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli , 1996, Nature.

[60]  John T. Williams,et al.  Properties and Opioid Inhibition of Mesolimbic Dopamine Neurons Vary according to Target Location , 2006, The Journal of Neuroscience.

[61]  T. Jhou Neural mechanisms of freezing and passive aversive behaviors , 2005, The Journal of comparative neurology.

[62]  H. Kimura,et al.  The efferent projections of the rat lateral habenular nucleus revealed by the PHA-L anterograde tracing method , 1988, Brain Research.

[63]  S. Ikemoto,et al.  Regional Differences Within the Rat Ventral Tegmental Area for Muscimol Self-Infusions , 1998, Pharmacology Biochemistry and Behavior.

[64]  M. Fanselow,et al.  Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. , 1993, Behavioral neuroscience.

[65]  M. Barrot,et al.  Regulation of Drug Reward by cAMP Response Element-Binding Protein: Evidence for Two Functionally Distinct Subregions of the Ventral Tegmental Area , 2005, The Journal of Neuroscience.

[66]  Barry J. Everitt,et al.  Conditioned suppression and freezing as measures of aversive Pavlovian conditioning: effects of discrete amygdala lesions and overtraining , 2005, Behavioural Brain Research.

[67]  J. Horvitz Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events , 2000, Neuroscience.

[68]  G. Holstege,et al.  Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat , 2004, Experimental Brain Research.

[69]  P. Shepard,et al.  Lateral Habenula Stimulation Inhibits Rat Midbrain Dopamine Neurons through a GABAA Receptor-Mediated Mechanism , 2007, The Journal of Neuroscience.

[70]  M. Fendt,et al.  Temporary inactivation of the medial and basolateral amygdala differentially affects TMT-induced fear behavior in rats , 2006, Behavioural Brain Research.

[71]  J. Brooks,et al.  REVIEW: From nociception to pain perception: imaging the spinal and supraspinal pathways , 2005, Journal of anatomy.

[72]  Geoffrey Schoenbaum,et al.  Rapid Associative Encoding in Basolateral Amygdala Depends on Connections with Orbitofrontal Cortex , 2005, Neuron.

[73]  D. S. Zahm,et al.  Activation of afferents to the ventral tegmental area in response to acute amphetamine: a double‐labelling study , 2007, The European journal of neuroscience.

[74]  D. Schulz,et al.  Lesion of the bed nucleus of the stria terminalis enhances learned despair , 2000, Brain Research Bulletin.

[75]  Sham M. Kakade,et al.  Opponent interactions between serotonin and dopamine , 2002, Neural Networks.

[76]  E. Nestler,et al.  Topographical organization of GABAergic neurons within the ventral tegmental area of the rat , 2007, Synapse.

[77]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  Resit Canbeyli,et al.  Effects of BNST lesions in female rats on forced swimming and navigational learning , 2008, Brain Research.

[79]  E. Morton,et al.  Animal Vocal Communication: A New Approach , 1998 .

[80]  M. Le Moal,et al.  Addiction and the brain antireward system. , 2008, Annual review of psychology.

[81]  Howard L Fields,et al.  Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal , 2004, Nature Neuroscience.

[82]  C. Saper,et al.  Hypothalamic Arousal Regions Are Activated during Modafinil-Induced Wakefulness , 2000, The Journal of Neuroscience.

[83]  W. Pan,et al.  Dopamine Cells Respond to Predicted Events during Classical Conditioning: Evidence for Eligibility Traces in the Reward-Learning Network , 2005, The Journal of Neuroscience.

[84]  B. Beer,et al.  6-hydroxydopamine and avoidance: Possible role of response suppression , 1975, Pharmacology Biochemistry and Behavior.

[85]  Jennifer M. Mitchell,et al.  Midbrain Dopamine Neurons: Projection Target Determines Action Potential Duration and Dopamine D2 Receptor Inhibition , 2008, The Journal of Neuroscience.

[86]  G. Schoenbaum,et al.  Neural Encoding in Orbitofrontal Cortex and Basolateral Amygdala during Olfactory Discrimination Learning , 1999, The Journal of Neuroscience.