Sampled-Data $H^{2}$ Optimization of Systems With I/O Delays via Analog Loop Shifting

The problem of sampled-data H2 control of systems with a single input delay is studied. Conventional solutions of sampled-data optimal control problems begin with a conversion to a discrete-time problem with input delays, followed by a matching optimization method, geared to handle delays. We propose reversing that order and address the delay first, by an analog loop transformation. Hence, discretization and optimization involve no delays and are amenable to any standard method. The proposed, streamlined, approach fits also previously unsolved problems where sampling and/or hold functions are design parameters.

[1]  B. Francis,et al.  H/sub 2/-optimal sampled-data control , 1991 .

[2]  P. Colaneri State-feedback problems in H2 and H for continuous-time periodic systems. Part I: theoretical aspects , 2000 .

[3]  Masami Ito,et al.  A process-model control for linear systems with delay , 1981 .

[4]  Z. Artstein Linear systems with delayed controls: A reduction , 1982 .

[5]  Tomomichi Hagiwara,et al.  FR-operator approach to the H2 analysis and synthesis of sampled-data systems , 1995, IEEE Trans. Autom. Control..

[6]  A. Olbrot,et al.  Finite spectrum assignment problem for systems with delays , 1979 .

[7]  Gilead Tadmor,et al.  H ∞ optimal sampled-data control in continuous time systems , 1992 .

[8]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[9]  Matthew Turner,et al.  Multivariable Computer-Controlled Systems: A Transfer Function Approach (Rosenwasser, E.N. and Lampe, B.P.; 2006) [Book Review] , 2008, IEEE Control Systems.

[10]  H. L. Trentelman,et al.  Sampled-Data and Discrete-Time $H_2$ Optimal Control , 1995 .

[11]  Leonid Mirkin,et al.  Every stabilizing dead-time controller has an observer-predictor-based structure , 2003, Autom..

[12]  Tongwen Chen,et al.  Linear time-varying H2-optimal control of sampled-data systems , 1991, Autom..

[13]  Eliahu Ibrahim Jury,et al.  Sampled-data control systems , 1977 .

[14]  K. Åström,et al.  Systems with Lebesgue sampling , 2003 .

[15]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[16]  LEONID MIRKIN,et al.  H2 and Hinfinity Design of Sampled-Data Systems Using Lifting. Part I: General Framework and Solutions , 1999, SIAM J. Control. Optim..

[17]  Bernhard P. Lampe,et al.  H2-optimization of time-delayed sampled-data systems on the basis of the parametric transfer matrix method , 2010 .

[18]  Nadine Gottschalk,et al.  Computer Controlled Systems Theory And Design , 2016 .

[19]  David L. Kleinman,et al.  Optimal control of linear systems with time-delay and observation noise , 1969 .

[20]  J. Bontsema,et al.  An application driven guide through infinite-dimensional systems theory , 1997 .

[21]  Bernhard P. Lampe,et al.  Multivariable Computer-controlled Systems , 2006 .

[22]  K. Furuta,et al.  Sampled-data optimal control of continuous systems for quadratic criterion function taking account of delayed control action , 1985 .

[23]  R. Saeks,et al.  The analysis of feedback systems , 1972 .

[24]  Gene F. Franklin,et al.  Digital Control Of Dynamic Systems 3rd Edition , 2014 .

[25]  Wook Hyun Kwon,et al.  Feedback stabilization of linear systems with delayed control , 1980 .

[26]  Shinji Hara,et al.  A hybrid state-space approach to sampled-data feedback control , 1994 .

[27]  Bengt Lennartson,et al.  Sampled-data control for time-delayed plants , 1989 .

[28]  Leonid Mirkin,et al.  Dead-Time Compensation for Systems With Multiple I/O Delays: A Loop-Shifting Approach , 2011, IEEE Transactions on Automatic Control.

[29]  Leonid Mirkin,et al.  Control Issues in Systems with Loop Delays , 2005, Handbook of Networked and Embedded Control Systems.