Lithiated porous aromatic frameworks with exceptional gas storage capacity.
暂无分享,去创建一个
Aaron W Thornton | Colin D Wood | B. Cox | D. F. Kennedy | C. Doherty | A. Thornton | A. Hill | M. Hill | K. Konstas | C. Wood | Barry J Cox | Cara M Doherty | Anita J Hill | Kristina Konstas | Matthew R Hill | James M Hill | Aaron W. Thornton | Timothy J Bastow | James W Taylor | Wei Xian Lim | Danielle F Kennedy | T. Bastow | J. M. Hill | James W. Taylor | W. Lim
[1] Feng Deng,et al. Gas storage in porous aromatic frameworks (PAFs) , 2011 .
[2] A. Cooper,et al. Microporous poly(tri(4-ethynylphenyl)amine) networks:synthesis, properties, and atomistic simulation , 2009 .
[3] Neil B. McKeown,et al. Exploitation of Intrinsic Microporosity in Polymer-Based Materials , 2010 .
[4] Mircea Dincă,et al. Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.
[5] Wei-Qiao Deng,et al. Improved designs of metal-organic frameworks for hydrogen storage. , 2007, Angewandte Chemie.
[6] A. Cooper,et al. Hydrogen adsorption in microporous hypercrosslinked polymers. , 2006, Chemical communications.
[7] R. Noble,et al. A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2. , 2010, Angewandte Chemie.
[8] Jeffrey R. Long,et al. Wasserstoffspeicherung in mikroporösen metall-organischen Gerüsten mit koordinativ ungesättigten Metallzentren , 2008 .
[9] Chao Wang,et al. Metal-organic conjugated microporous polymers. , 2011, Angewandte Chemie.
[10] Lev Sarkisov,et al. Design of new materials for methane storage. , 2004, Langmuir : the ACS journal of surfaces and colloids.
[11] C. D. Collier,et al. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. , 2008, Journal of the American Chemical Society.
[12] B. Kariuki,et al. Hexaphenylbenzene-based polymers of intrinsic microporosity. , 2011, Chemical communications.
[13] C. Serre,et al. How hydration drastically improves adsorption selectivity for CO(2) over CH(4) in the flexible chromium terephthalate MIL-53. , 2006, Angewandte Chemie.
[14] Dan Zhao,et al. Highly Stable Porous Polymer Networks with Exceptionally High Gas‐Uptake Capacities , 2011, Advanced materials.
[15] Weiqiao Deng,et al. Lithium-doped conjugated microporous polymers for reversible hydrogen storage. , 2010, Angewandte Chemie.
[16] Michael O'Keeffe,et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.
[17] Stuart R. Batten,et al. Coordination Polymers: Design, Analysis and Application , 2009 .
[18] D. M. D'Alessandro,et al. Abscheidung von Kohlendioxid: Perspektiven für neue Materialien , 2010 .
[19] A. Celzard,et al. Preparing a Suitable Material Designed for Methane Storage: A Comprehensive Report , 2005 .
[20] Andrew I. Cooper,et al. Poröse organische Polymere: Muss Ordnung doch nicht sein?† , 2010 .
[21] R. Robson,et al. Einander durchdringende Netze: geordnete, periodische Verschlingung , 1998 .
[22] A. Cooper,et al. Porous organic polymers: distinction from disorder? , 2010, Angewandte Chemie.
[23] Joseph R. Hunt,et al. Exceptional ammonia uptake by a covalent organic framework. , 2010, Nature chemistry.
[24] Neil L. Campbell,et al. Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks , 2007 .
[25] D. D’Alessandro,et al. Toward carbon dioxide capture using nanoporous materials , 2010 .
[26] K. Nairn,et al. Metal-organic frameworks impregnated with magnesium-decorated fullerenes for methane and hydrogen storage. , 2009, Journal of the American Chemical Society.
[27] Joseph T Hupp,et al. Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. , 2007, Journal of the American Chemical Society.
[28] Joanna Rowsell,et al. Strategien für die Wasserstoffspeicherung in metall‐organischen Kompositgerüsten , 2005 .
[29] Andrew I. Cooper. Nanoporöse organische Festkörper im Zeichen des Käfigs , 2011 .
[30] A. Cooper,et al. Microporous Organic Polymers for Methane Storage , 2008 .
[31] S. Patil,et al. Aromatic, microporous polymer networks with high surface area generated in Friedel–Crafts-type polycondensations , 2011 .
[32] Omar M Yaghi,et al. Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.
[33] Wenchuan Wang,et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. , 2009, Angewandte Chemie.
[34] A. Cooper. Nanoporous organics enter the cage age. , 2011, Angewandte Chemie.
[35] B. Smit,et al. Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.
[36] Omar M Yaghi,et al. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.
[37] J. Long,et al. Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.
[38] K. Cychosz,et al. A microporous copper metal-organic framework with high H2 and CO2 adsorption capacity at ambient pressure. , 2011, Angewandte Chemie.
[39] Matthew R. Hill,et al. Synthesis and hydrogen storage properties of Be(12)(OH)(12)(1,3,5-benzenetribenzoate)(4). , 2009, Journal of the American Chemical Society.
[40] S. Bhatia,et al. Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.
[41] Wenchuan Wang,et al. Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping. , 2011, Angewandte Chemie.
[42] R. Clowes,et al. Palladium Nanoparticle Incorporation in Conjugated Microporous Polymers by Supercritical Fluid Processing , 2010 .
[43] Stuart R Batten,et al. Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.