Lithiated porous aromatic frameworks with exceptional gas storage capacity.

Kristina Konstas, James W. Taylor, Aaron W. Thornton, Cara M. Doherty, Wei Xian Lim, Timothy J. Bastow, Danielle F. Kennedy, Colin D. Wood, Barry J. Cox, James M. Hill, Anita J. Hill, Matthew R. Hill

[1]  Feng Deng,et al.  Gas storage in porous aromatic frameworks (PAFs) , 2011 .

[2]  A. Cooper,et al.  Microporous poly(tri(4-ethynylphenyl)amine) networks:synthesis, properties, and atomistic simulation , 2009 .

[3]  Neil B. McKeown,et al.  Exploitation of Intrinsic Microporosity in Polymer-Based Materials , 2010 .

[4]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[5]  Wei-Qiao Deng,et al.  Improved designs of metal-organic frameworks for hydrogen storage. , 2007, Angewandte Chemie.

[6]  A. Cooper,et al.  Hydrogen adsorption in microporous hypercrosslinked polymers. , 2006, Chemical communications.

[7]  R. Noble,et al.  A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2. , 2010, Angewandte Chemie.

[8]  Jeffrey R. Long,et al.  Wasserstoffspeicherung in mikroporösen metall-organischen Gerüsten mit koordinativ ungesättigten Metallzentren , 2008 .

[9]  Chao Wang,et al.  Metal-organic conjugated microporous polymers. , 2011, Angewandte Chemie.

[10]  Lev Sarkisov,et al.  Design of new materials for methane storage. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[11]  C. D. Collier,et al.  Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. , 2008, Journal of the American Chemical Society.

[12]  B. Kariuki,et al.  Hexaphenylbenzene-based polymers of intrinsic microporosity. , 2011, Chemical communications.

[13]  C. Serre,et al.  How hydration drastically improves adsorption selectivity for CO(2) over CH(4) in the flexible chromium terephthalate MIL-53. , 2006, Angewandte Chemie.

[14]  Dan Zhao,et al.  Highly Stable Porous Polymer Networks with Exceptionally High Gas‐Uptake Capacities , 2011, Advanced materials.

[15]  Weiqiao Deng,et al.  Lithium-doped conjugated microporous polymers for reversible hydrogen storage. , 2010, Angewandte Chemie.

[16]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[17]  Stuart R. Batten,et al.  Coordination Polymers: Design, Analysis and Application , 2009 .

[18]  D. M. D'Alessandro,et al.  Abscheidung von Kohlendioxid: Perspektiven für neue Materialien , 2010 .

[19]  A. Celzard,et al.  Preparing a Suitable Material Designed for Methane Storage: A Comprehensive Report , 2005 .

[20]  Andrew I. Cooper,et al.  Poröse organische Polymere: Muss Ordnung doch nicht sein?† , 2010 .

[21]  R. Robson,et al.  Einander durchdringende Netze: geordnete, periodische Verschlingung , 1998 .

[22]  A. Cooper,et al.  Porous organic polymers: distinction from disorder? , 2010, Angewandte Chemie.

[23]  Joseph R. Hunt,et al.  Exceptional ammonia uptake by a covalent organic framework. , 2010, Nature chemistry.

[24]  Neil L. Campbell,et al.  Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks , 2007 .

[25]  D. D’Alessandro,et al.  Toward carbon dioxide capture using nanoporous materials , 2010 .

[26]  K. Nairn,et al.  Metal-organic frameworks impregnated with magnesium-decorated fullerenes for methane and hydrogen storage. , 2009, Journal of the American Chemical Society.

[27]  Joseph T Hupp,et al.  Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. , 2007, Journal of the American Chemical Society.

[28]  Joanna Rowsell,et al.  Strategien für die Wasserstoffspeicherung in metall‐organischen Kompositgerüsten , 2005 .

[29]  Andrew I. Cooper Nanoporöse organische Festkörper im Zeichen des Käfigs , 2011 .

[30]  A. Cooper,et al.  Microporous Organic Polymers for Methane Storage , 2008 .

[31]  S. Patil,et al.  Aromatic, microporous polymer networks with high surface area generated in Friedel–Crafts-type polycondensations , 2011 .

[32]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[33]  Wenchuan Wang,et al.  Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. , 2009, Angewandte Chemie.

[34]  A. Cooper Nanoporous organics enter the cage age. , 2011, Angewandte Chemie.

[35]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[36]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[37]  J. Long,et al.  Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.

[38]  K. Cychosz,et al.  A microporous copper metal-organic framework with high H2 and CO2 adsorption capacity at ambient pressure. , 2011, Angewandte Chemie.

[39]  Matthew R. Hill,et al.  Synthesis and hydrogen storage properties of Be(12)(OH)(12)(1,3,5-benzenetribenzoate)(4). , 2009, Journal of the American Chemical Society.

[40]  S. Bhatia,et al.  Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[41]  Wenchuan Wang,et al.  Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping. , 2011, Angewandte Chemie.

[42]  R. Clowes,et al.  Palladium Nanoparticle Incorporation in Conjugated Microporous Polymers by Supercritical Fluid Processing , 2010 .

[43]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.