Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials

In this work, we investigate the detailed theory of the supercoupling, anomalous tunneling effect, and field confinement originally identified by Silveirinha and Engheta [Phys. Rev. Lett. 97, 157403 (2006)], where we demonstrated the possibility of using materials with permittivity $\ensuremath{\epsilon}$ near zero to drastically improve the transmission of electromagnetic energy through a narrow irregular channel with very subwavelength transverse cross section. Here, we present additional physical insights, describe applications of the tunneling effect in relevant waveguide scenarios (e.g., the ``perfect'' or ``super'' waveguide coupling), and study the effect of metal losses in the metallic walls and the possibility of using near-zero $\ensuremath{\epsilon}$ materials to confine energy in a subwavelength cavity with gigantic field enhancement. In addition, we systematically study the propagation of electromagnetic waves through narrow channels filled with anisotropic near-zero $\ensuremath{\epsilon}$ materials. It is demonstrated that these materials may have interesting potentials, and that for some particular geometries, the reflectivity of the channel is independent of the specific dimensions or parameters of near-zero $\ensuremath{\epsilon}$ transition. We also describe several realistic metamaterial implementations of the studied problems, based on standard metallic waveguides, microstrip line configurations, and wire media.

[1]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[2]  Nicholas Chako,et al.  Wave propagation and group velocity , 1960 .

[3]  D. Fredkin,et al.  Resonant behavior of dielectric objects (electrostatic resonances). , 2003, Physical review letters.

[4]  N. Engheta,et al.  Parallel-plate metamaterials for cloaking structures. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  D. A. Kleinman,et al.  Infrared Properties of Hexagonal Silicon Carbide , 1959 .

[6]  N. Engheta,et al.  An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability , 2002, IEEE Antennas and Wireless Propagation Letters.

[7]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[8]  S. Tretyakov,et al.  Strong spatial dispersion in wire media in the very large wavelength limit , 2002, cond-mat/0211204.

[9]  Nader Engheta,et al.  Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media , 2007 .

[10]  Pavel A. Belov,et al.  Subwavelength imaging at infrared frequencies using an array of metallic nanorods , 2007 .

[11]  Nader Engheta,et al.  Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. , 2006, Physical review letters.

[12]  R. Collin Field theory of guided waves , 1960 .

[13]  J. Bladel Singular electromagnetic fields and sources , 1996 .

[14]  W. Rotman Plasma simulation by artificial dielectrics and parallel-plate media , 1962 .

[15]  H. Kurz,et al.  Transmission of THz radiation through InSb gratings of subwavelength apertures. , 2005, Optics express.

[16]  F. Medina,et al.  Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides. , 2002, Physical review letters.

[17]  Stefan A Maier,et al.  Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. , 2006, Physical review letters.

[18]  Nader Engheta,et al.  Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes , 2006, physics/0603052.

[19]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[20]  H. Miyazaki,et al.  Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. , 2006, Physical review letters.

[21]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[22]  Viktor A. Podolskiy,et al.  Metamaterial photonic funnels for subdiffraction light compression and propagation , 2006 .

[23]  S. Tretyakov Analytical Modeling in Applied Electromagnetics , 2003 .

[24]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[25]  Nonlocal homogenization model for a periodic array of epsilon-negative rods. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.