A new variational formulation with high order impedance boundary condition for the scattering problem in electromagnetism

In this paper, we propose some variational formulations with the use of high order impedance boundary condition (HOIBC) to solve the scattering problem. We study the existence and uniqueness of the solution. Then, a discretization of these formulations is done. We give validations of the HOIBC obtained with a MoM code that show the improvement in accuracy over the standard impedance boundary condition (SIBC) computations.

[1]  B. Stupfel,et al.  Impedance boundary conditions for finite planar and curved frequency selective surfaces , 2005, IEEE Transactions on Antennas and Propagation.

[2]  B. Stupfel,et al.  High-order impedance boundary conditions for multilayer coated 3-D objects , 2000 .

[3]  B. Stupfel Implementation of High-Order Impedance Boundary Conditions in Some Integral Equation Formulations , 2015, IEEE Transactions on Antennas and Propagation.

[4]  F. Karal,et al.  GENERALIZED IMPEDANCE BOUNDARY CONDITIONS WITH APPLICATIONS TO SURFACE WAVE STRUCTURES , 1967 .

[5]  B. Stupfel Impedance boundary conditions for finite planar or curved frequency selective surfaces embedded in dielectric Layers , 2005, IEEE Transactions on Antennas and Propagation.

[6]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[7]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[8]  M'Barek Fares,et al.  A boundary-element solution of the Leontovitch problem , 1999 .

[9]  Mixed and hybrid formulations for the three‐dimensional magnetostatic problem , 2002 .

[10]  Yahya Rahmat-Samii,et al.  Scattering by superquadric dielectric-coated cylinders using higher order impedance boundary conditions , 1992 .

[11]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[12]  R. Cicchetti,et al.  A class of exact and higher-order surface boundary conditions for layered structures , 1996 .

[13]  J. Volakis,et al.  Approximate boundary conditions in electromagnetics , 1995 .

[14]  Keddour Lemrabet,et al.  The Effect of a Thin Coating on the Scattering of a Time-Harmonic Wave for the Helmholtz Equation , 1996, SIAM J. Appl. Math..

[15]  Isabelle Terrasse,et al.  Resolution mathematique et numerique des equations de maxwell instationnaires par une methode de potentiels retardes , 1993 .

[16]  L. N. Medgyesi-Mitschang,et al.  Generalized method of moments for three-dimensional penetrable scatterers , 1994 .

[17]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[18]  R. Kleinman,et al.  Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics , 1997 .

[19]  D. Hoppe Impedance Boundary Conditions In Electromagnetics , 1995 .

[20]  T. Kubo,et al.  Electromagnetic Fields , 2008 .

[21]  Bruno Stupfel,et al.  Sufficient uniqueness conditions for the solution of the time harmonic Maxwell's equations associated with surface impedance boundary conditions , 2011, J. Comput. Phys..

[22]  B. Stupfel One-Way Domain Decomposition Method With Adaptive Absorbing Boundary Condition for the Solution of Maxwell's Equations , 2013, IEEE Transactions on Antennas and Propagation.

[23]  Dau-Sing Y. Wang,et al.  Limits and validity of the impedance boundary condition on penetrable surfaces , 1987 .