The Linear Canonical Transformation: Definition and Properties

In this chapter we introduce the class of linear canonical transformations, which includes as particular cases the Fourier transformation (and its generalization: the fractional Fourier transformation), the Fresnel transformation, and magnifier, rotation and shearing operations. The basic properties of these transformations—such as cascadability, scaling, shift, phase modulation, coordinate multiplication and differentiation—are considered. We demonstrate that any linear canonical transformation is associated with affine transformations in phase space, defined by time-frequency or position-momentum coordinates. The affine transformation is described by a symplectic matrix, which defines the parameters of the transformation kernel. This alternative matrix description of linear canonical transformations is widely used along the chapter and allows simplifying the classification of such transformations, their eigenfunction identification, the interpretation of the related Wigner distribution and ambiguity function transformations, among many other tasks. Special attention is paid to the consideration of one- and two-dimensional linear canonical transformations, which are more often used in signal processing, optics and mechanics. Analytic expressions for the transforms of some selected functions are provided.

[1]  Mj Martin Bastiaans ABCD law for partially coherent Gaussian light, propagating through first-order optical systems , 1992, Optical Society of America Annual Meeting.

[2]  Christiane Quesne,et al.  Linear Canonical Transformations and Their Unitary Representations , 1971 .

[3]  Soo-Chang Pei,et al.  Eigenfunctions of linear canonical transform , 2002, IEEE Trans. Signal Process..

[4]  G. S. Agarwal,et al.  Wigner representation of Laguerre--Gaussian beams. , 2000, Optics letters.

[5]  Tatiana Alieva,et al.  First-order optical systems with unimodular eigenvalues. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  J. Goodman Introduction to Fourier optics , 1969 .

[7]  K. Wolf Canonical transforms, separation of variables, and similarity solutions for a class of parabolic differential equations , 1976 .

[8]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers. Definitions, theorems, and formulas for reference and review , 1968 .

[9]  A. Walther Propagation of the generalized radiance through lenses , 1978 .

[10]  N. Mukunda,et al.  Iwasawa decomposition in first-order optics: universal treatment of shape-invariant propagation for coherent and partially coherent beams. , 1998 .

[11]  Tatiana Alieva,et al.  Properties of the linear canonical integral transformation. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Shutian Liu,et al.  Optical image encryption based on the generalized fractional convolution operation , 2001 .

[13]  Tatiana Alieva,et al.  Generating function for Hermite-Gaussian modes propagating through first-order optical systems , 2005 .

[14]  Tatiana Alieva,et al.  Classification of lossless first-order optical systems and the linear canonical transformation. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  Mj Martin Bastiaans Application of the Wigner distribution function to partially coherent light , 1986 .

[16]  K. Sundar,et al.  Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum , 1993 .

[17]  F. H. Kerr,et al.  On Namias's fractional Fourier transforms , 1987 .

[18]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[19]  S. A. Collins Lens-System Diffraction Integral Written in Terms of Matrix Optics , 1970 .

[20]  Kurt Bernardo Wolf,et al.  Integral transforms in science and engineering , 1979 .

[21]  A. A. Malyutin Use of the fractional Fourier transform in π/2 converters of laser modes , 2004 .

[22]  Mj Martin Bastiaans,et al.  Propagation law for the generating function of Hermite-Gaussian-type modes in first-order optical systems. , 2005 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Z. Zalevsky,et al.  The Fractional Fourier Transform: with Applications in Optics and Signal Processing , 2001 .

[25]  Eugeny Abramochkin,et al.  Generalized Gaussian beams , 2004 .

[26]  T. Alieva,et al.  Signal representation on the angular Poincaré sphere, based on second-order moments. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  Mj Martin Bastiaans,et al.  First-order optical systems with real eigenvalues , 2007 .

[28]  V. Namias The Fractional Order Fourier Transform and its Application to Quantum Mechanics , 1980 .

[29]  J. Galán,et al.  Parametric characterization of general partially coherent beams propagating through ABCD optical-systems , 1991 .

[30]  Martin J. Bastiaans,et al.  Fractional Transforms in Optical Information Processing , 2005, EURASIP J. Adv. Signal Process..

[31]  Philip M. Woodward,et al.  Probability and Information Theory with Applications to Radar , 1954 .

[32]  A. Walther Radiometry and coherence , 1968 .

[33]  K. Wolf,et al.  Structure of the set of paraxial optical systems. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  Zeev Zalevsky,et al.  Synthesis of pattern recognition filters for fractional Fourier processing , 1996 .

[35]  J. Williamson On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .

[36]  A. Janssen Positivity of Weighted Wigner Distributions , 1981 .

[37]  M. Moshinsky,et al.  Wigner distribution functions and the representation of canonical transformations in quantum mechanics , 1980 .

[38]  Daniela Dragoman,et al.  I: The Wigner Distribution Function in Optics and Optoelectronics , 1997 .

[39]  Phase-space rotations and orbital Stokes parameters. , 2009, Optics letters.

[40]  A. Friberg,et al.  Interpretation and experimental demonstration of twisted Gaussian Schell-model beams , 1994 .

[41]  Mj Martin Bastiaans Wigner distribution in optics , 2009 .

[42]  Tatiana Alieva,et al.  Alternative representation of the linear canonical integral transform. , 2005, Optics letters.

[43]  Christiane Quesne,et al.  Canonical Transformations and Matrix Elements , 1971 .

[44]  A. Lohmann Image rotation, Wigner rotation, and the fractional Fourier transform , 1993 .

[45]  Joseph Shamir,et al.  First-order optics—a canonical operator representation: lossless systems , 1982 .

[46]  M J Bastiaans Wigner distribution function applied to twisted Gaussian light propagating in first-order optical systems. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[47]  Zeev Zalevsky,et al.  Space-variant simultaneous detection of several objects by the use of multiple anamorphic fractional-Fourier-transform filters. , 1996, Applied optics.

[48]  Mj Martin Bastiaans Second-order moments of the Wigner distribution function in first-order optical systems , 1988 .

[49]  Girish S. Agarwal,et al.  SU(2) structure of the Poincaré sphere for light beams with orbital angular momentum , 1999 .

[50]  E. Sudarshan,et al.  Partially coherent beams and a generalized ABCD-law , 1988 .

[51]  R. Simon,et al.  Twist phase in Gaussian-beam optics , 1998 .

[52]  Tatiana Alieva,et al.  Mode mapping in paraxial lossless optics. , 2005, Optics letters.

[53]  Kurt Bernardo Wolf Canonical transforms. II. Complex radial transforms , 1974 .

[54]  Olcay Akay,et al.  Fractional convolution and correlation via operator methods and an application to detection of linear FM signals , 2001, IEEE Trans. Signal Process..

[55]  Kurt Bernardo Wolf,et al.  Canonical transforms. I. Complex linear transforms , 1974 .

[56]  K. Sundar,et al.  Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics , 1993 .

[57]  R. Simon,et al.  Twisted Gaussian Schell-model beams , 1993 .

[58]  M J Padgett,et al.  Poincaré-sphere equivalent for light beams containing orbital angular momentum. , 1999, Optics letters.

[59]  Mj Martin Bastiaans Application of the Wigner distribution function in optics , 1997 .

[60]  Volker Mehrmann,et al.  Canonical forms for Hamiltonian and symplectic matrices and pencils , 1999 .

[61]  K. Wolf,et al.  Fractional Fourier transforms in two dimensions. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[62]  Ari T. Friberg,et al.  Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems , 1996 .

[63]  Mj Martin Bastiaans Wigner distribution function and its application to first-order optics , 1979 .

[64]  Mj Martin Bastiaans Applications of the Wigner distribution to partially coherent light beams , 2008 .

[65]  Mj Martin Bastiaans The Wigner distribution function applied to optical signals and systems , 1978 .

[66]  Dario Ambrosini,et al.  Twisted Gaussian Schell-model Beams: A Superposition Model , 1994 .

[67]  R. Simon,et al.  Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams , 1995 .