On solving systems of random linear disequations

An important special case of the hidden subgroup problem is equivalent to the hiddenshift problem over abelian groups. An efficient solution to the latter problem could serveas a building block of quantum hidden subgroup algorithms over solvable groups. Themain idea of a promising approach to the hidden shift problem is a reduction to solvingsystems of certain random disequations in finite abelian groups. By a disequation wemean a constraint of the form f(x) ≠ 0. In our case, the functions on the left handside are generalizations of linear functions. The input is a random sample of functionsaccording to a distribution which is up to a constant factor uniform over the "linear"functions f such that f(u) ≠ 0 for a fixed, although unknown element u ∈ A. The goal isto find u, or, more precisely, all the elements u′ ∈ A satisfying the same disequations asu. In this paper we give a classical probabilistic algorithm which solves the problem inan abelian p-group A in time polynomial in the sample size N, where N = (log |A|)O(q2),and q is the exponent of A.

[1]  T. Beth,et al.  Polynomial-Time Solution to the Hidden Subgroup Problem for a Class of non-abelian Groups , 1998, quant-ph/9812070.

[2]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[3]  Umesh V. Vazirani,et al.  Quantum mechanical algorithms for the nonabelian hidden subgroup problem , 2001, STOC '01.

[4]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[5]  Emanuel Knill,et al.  The quantum query complexity of the hidden subgroup problem is polynomial , 2004, Inf. Process. Lett..

[6]  Sean Hallgren,et al.  Quantum algorithms for some hidden shift problems , 2003, SODA '03.

[7]  Frédéric Magniez,et al.  Hidden translation and orbit coset in quantum computing , 2002, STOC '03.

[8]  Mark Ettinger,et al.  On Quantum Algorithms for Noncommutative Hidden Subgroups , 1998, STACS.

[9]  Neville Robbins,et al.  Beginning Number Theory , 1993 .

[10]  George W. Polites,et al.  An introduction to the theory of groups , 1968 .

[11]  Michael A. Frumkin,et al.  Polynomial Time Algorithms in the Theory of Linear Diophantine Equations , 1977, FCT.

[12]  Alexander Russell,et al.  The Hidden Subgroup Problem and Quantum Computation Using Group Representations , 2003, SIAM J. Comput..

[13]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[14]  Oded Regev,et al.  Quantum computation and lattice problems , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[15]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[16]  B. Huppert Endliche Gruppen I , 1967 .

[17]  Michele Mosca,et al.  Quantum Computer Algorithms , 2003 .

[18]  Alexander Russell,et al.  The power of basis selection in fourier sampling: hidden subgroup problems in affine groups , 2004, SODA '04.

[19]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[20]  Michele Mosca,et al.  Decomposing finite Abelian groups , 2001, Quantum Inf. Comput..

[21]  Alexander Russell,et al.  Normal subgroup reconstruction and quantum computation using group representations , 2000, STOC '00.

[22]  Frédéric Magniez,et al.  Quantum Testers for Hidden Group Properties , 2003, MFCS.

[23]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[24]  Greg Kuperberg A Subexponential-Time Quantum Algorithm for the Dihedral Hidden Subgroup Problem , 2005, SIAM J. Comput..

[25]  E. F. Assmus POLYNOMIAL CODES AND FINITE GEOMETRIES , 2003 .

[26]  Dave Bacon,et al.  From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).