A patient with a large recurrent pheochromocytoma demonstrating the pitfalls of diagnosis

[1]  R. Lloyd Adrenal cortical tumors, pheochromocytomas and paragangliomas , 2011, Modern Pathology.

[2]  J. Lombard,et al.  123I-meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. , 2010, The Journal of clinical endocrinology and metabolism.

[3]  Erin E. Chambers,et al.  Performance of plasma free metanephrines measured by liquid chromatography-tandem mass spectrometry in the diagnosis of pheochromocytoma. , 2010, Clinica chimica acta; international journal of clinical chemistry.

[4]  R. Dullaart,et al.  New imaging approaches to phaeochromocytomas and paragangliomas , 2010, Clinical endocrinology.

[5]  S. Callen,et al.  Pilot quality assurance programme for plasma metanephrines , 2010, Annals of clinical biochemistry.

[6]  S. Majumdar,et al.  Compound heterozygous mutation with a novel splice donor region DNA sequence variant in the succinate dehydrogenase subunit B gene in malignant paraganglioma , 2010, Pediatric blood & cancer.

[7]  Fiona Douglas,et al.  Tumor risks and genotype–phenotype–proteotype analysis in 358 patients with germline mutations in SDHB and SDHD , 2010, Human mutation.

[8]  D. Schteingart 6-[F-18]Fluoro-l-Dihydroxyphenylalanine Positron Emission Tomography Is Superior to Conventional Imaging with 123I-Metaiodobenzylguanidine Scintigraphy, Computer Tomography, and Magnetic Resonance Imaging in Localizing Tumors Causing Catecholamine Excess , 2010 .

[9]  E. D. de Vries,et al.  6-[F-18]Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. , 2009, The Journal of clinical endocrinology and metabolism.

[10]  K. Buddavarapu,et al.  Pheochromocytomas: From Genetic Diversity to New Paradigms , 2009, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[11]  J. Carrasquillo,et al.  Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. , 2009, The Journal of clinical endocrinology and metabolism.

[12]  S. Steinberg,et al.  Treatment of malignant pheochromocytoma/paraganglioma with cyclophosphamide, vincristine, and dacarbazine , 2008, Cancer.

[13]  R. Reznek,et al.  123I‐metaiodobenzylguanidine (MIBG) scintigraphy for the detection of adrenal and extra‐adrenal phaeochromocytomas: CT and MRI correlation , 2008, Clinical endocrinology.

[14]  Laura H. Tang,et al.  Prognostic indicators of malignancy in adrenal pheochromocytomas: clinical, histopathologic, and cell cycle/apoptosis gene expression analysis. , 2008, Surgery.

[15]  T. Abe,et al.  Immunohistochemistry of a proliferation marker Ki67/MIB1 in adrenocortical carcinomas: Ki67/MIB1 labeling index is a predictor for recurrence of adrenocortical carcinomas. , 2008, Endocrine journal.

[16]  W. Young,et al.  Plasma chromogranin A or urine fractionated metanephrines follow-up testing improves the diagnostic accuracy of plasma fractionated metanephrines for pheochromocytoma. , 2008, The Journal of clinical endocrinology and metabolism.

[17]  Yanxia Sun,et al.  A logistic regression model for predicting malignant pheochromocytomas , 2008, Journal of Cancer Research and Clinical Oncology.

[18]  A. Elkahloun,et al.  Identification of potential gene markers and insights into the pathophysiology of pheochromocytoma malignancy. , 2007, The Journal of clinical endocrinology and metabolism.

[19]  E. Baudin,et al.  Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. , 2007, The Journal of clinical endocrinology and metabolism.

[20]  R. Onders,et al.  Analysis of large versus small pheochromocytomas: operative approaches and patient outcomes. , 2006, Surgery.

[21]  Haifeng Zhao,et al.  Development and validation of pheochromocytoma of the adrenal gland scaled score for predicting malignant pheochromocytomas. , 2006, Urology.

[22]  H. Neumann,et al.  Clinical and genetic characteristics of patients with neurofibromatosis type 1 and pheochromocytoma. , 2006, The New England journal of medicine.

[23]  K. Schmid,et al.  Diagnostic value of various biochemical parameters for the diagnosis of pheochromocytoma in patients with adrenal mass. , 2004, European journal of endocrinology.

[24]  M. Walther,et al.  Pheochromocytoma catecholamine phenotypes and prediction of tumor size and location by use of plasma free metanephrines. , 2005, Clinical chemistry.

[25]  Q. Duh,et al.  Should pheochromocytoma size influence surgical approach? A comparison of 90 malignant and 60 benign pheochromocytomas. , 2004, Surgery.

[26]  A. Gafni,et al.  A systematic review of the literature examining the diagnostic efficacy of measurement of fractionated plasma free metanephrines in the biochemical diagnosis of pheochromocytoma , 2004, BMC endocrine disorders.

[27]  R. Paschke,et al.  Does tumor heterogeneity limit the use of the Weiss criteria in the evaluation of adrenocortical tumors? , 2004, Journal of endocrinological investigation.

[28]  M. Walther,et al.  Biochemical diagnosis of pheochromocytoma: how to distinguish true- from false-positive test results. , 2003, The Journal of clinical endocrinology and metabolism.

[29]  L. Thompson Pheochromocytoma of the Adrenal Gland Scaled Score (PASS) to Separate Benign From Malignant Neoplasms: A Clinicopathologic and Immunophenotypic Study of 100 Cases , 2002, The American journal of surgical pathology.

[30]  J. Doppman,et al.  A "pheo" lurks: novel approaches for locating occult pheochromocytoma. , 2001, The Journal of clinical endocrinology and metabolism.