Unified Analytical Volume Distribution of Poisson-Delaunay Simplex and Its Application to Coordinated Multi-Point Transmission

For Poisson-Delaunay triangulations in <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula>-dimensional Euclidean space <inline-formula> <tex-math notation="LaTeX">$\mathbb {R}^{d}$ </tex-math></inline-formula>, a structured and computationally efficient form of the probability density function (PDF) of the volume of a typical cell is analytically derived in this paper. In particular, the ensuing PDF and the corresponding cumulative density function are exact and unified, applicable to spaces of arbitrary dimension (<inline-formula> <tex-math notation="LaTeX">$d \ge 1$ </tex-math></inline-formula>). Then, the special cases and shape characteristics of the resulting PDF are thoroughly examined. Finally, various applications of the obtained distribution functions are outlined and, in particular, a novel coordinated multi-point transmission scheme based on Poisson-Delaunay triangulation is developed and the pertinent void cell effect is precisely evaluated by using the obtained distribution functions.

[1]  N. L. Johnson,et al.  The Moment Problem for Unimodal Distributions , 1951 .

[2]  Arak M. Mathai,et al.  A handbook of generalized special functions for statistical and physical sciences , 1993 .

[3]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[4]  Jeffrey G. Andrews,et al.  An Analytical Framework for Multicell Cooperation via Stochastic Geometry and Large Deviations , 2013, IEEE Transactions on Information Theory.

[5]  Emil Björnson,et al.  Deploying Dense Networks for Maximal Energy Efficiency: Small Cells Meet Massive MIMO , 2015, IEEE Journal on Selected Areas in Communications.

[6]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[7]  Martin Haenggi,et al.  Stochastic Geometry for Wireless Networks , 2012 .

[8]  Lutz Muche,et al.  Distributional properties of the three-dimensional Poisson Delaunay cell , 1996 .

[9]  Martin Haenggi,et al.  Coordinated Multipoint Joint Transmission in Heterogeneous Networks , 2014, IEEE Transactions on Communications.

[10]  C. W. Clenshaw,et al.  The special functions and their approximations , 1972 .

[11]  P. N. Rathie On the volume distribution of the typical Poisson–Delaunay cell , 1992, Journal of Applied Probability.

[12]  Minghua Xia,et al.  Cooperative AF Relaying in Spectrum-Sharing Systems: Outage Probability Analysis under Co-Channel Interferences and Relay Selection , 2012, IEEE Transactions on Communications.

[13]  Hsiao-Hwa Chen,et al.  Performance Analysis of Downlink Coordinated Multipoint Joint Transmission in Ultra-Dense Networks , 2017, IEEE Network.

[14]  Long Bao Le,et al.  Coordinated Multipoint ( CoMP ) Transmission Design for Cloud-RANs with Limited Fronthaul Capacity Constraints , 2015 .

[15]  Oyvind Hjelle,et al.  Triangulations and applications , 2006 .

[16]  Jeffrey G. Andrews,et al.  A Tractable Approach to Coverage and Rate in Cellular Networks , 2010, IEEE Transactions on Communications.

[17]  Seong-Lyun Kim,et al.  Worst-Case User Analysis in Poisson Voronoi Cells , 2013, IEEE Communications Letters.

[18]  V. T. Rajan Optimality of the Delaunay triangulation in ℝd , 1994, Discret. Comput. Geom..

[19]  P. R. Nelson The algebra of random variables , 1979 .

[20]  Chun-Hung Liu,et al.  Optimal Cell Load and Throughput in Green Small Cell Networks With Generalized Cell Association , 2015, IEEE Journal on Selected Areas in Communications.

[21]  Tamal K. Dey,et al.  Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.

[22]  J. Møller Random tessellations in ℝ d , 1989, Advances in Applied Probability.

[23]  V. T. Rajan,et al.  Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.

[24]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[25]  Alagan Anpalagan,et al.  Energy Efficient Multiple Association in CoMP Based 5G Cloud-RAN Systems , 2017, 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall).

[26]  Robert W. Heath,et al.  Spectral Efficiency Scaling Laws in Dense Random Wireless Networks With Multiple Receive Antennas , 2016, IEEE Transactions on Information Theory.

[27]  C. C. Heyde,et al.  On a Property of the Lognormal Distribution , 1963 .

[28]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[29]  Jeffrey G. Andrews,et al.  What Will 5G Be? , 2014, IEEE Journal on Selected Areas in Communications.

[30]  Martin Haenggi,et al.  Downlink Coordinated Joint Transmission for Mutual Information Accumulation , 2017, IEEE Wireless Communications Letters.

[31]  Thomas M. Liebling,et al.  Voronoi Diagrams and Delaunay Triangulations: Ubiquitous Siamese Twins , 2012 .

[32]  Chun-Hung Liu,et al.  Random cell association and void probability in poisson-distributed cellular networks , 2015, 2015 IEEE International Conference on Communications (ICC).

[33]  A. Lozano,et al.  What Will 5 G Be ? , 2014 .

[34]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[35]  Tho Le-Ngoc,et al.  Optimal Dynamic Point Selection for Power Minimization in Multiuser Downlink CoMP , 2017, IEEE Transactions on Wireless Communications.

[36]  W. Weil,et al.  Stochastic and Integral Geometry , 2008 .