Optimization of cw sodium laser guide star efficiency

Context. Sodium laser guide stars (LGS) are about to enter a new range of laser powers. Previous theoretical and numerical methods are inadequate for accurate computations of the return flux, hence for the design of the next-generation LGS systems. Aims. We numerically optimize the cw (continuous wave) laser format, in particular, the light polarization and spectrum. Methods. Using Bloch equations, we simulate the mesospheric sodium atoms, including Doppler broadening, saturation, collisional relaxation, Larmor precession, and recoil, taking all 24 sodium hyperfine states into account and 100–300 velocity groups. Results. LGS return flux is limited by “three evils”: Larmor precession due to the geomagnetic field, atomic recoil due to radiation pressure, and transition saturation. We study their impact and show that the return flux can be boosted by repumping (simultaneous excitation of the sodium D2 aa nd D 2b lines with 10−20% of the laser power in the latter). Conclusions. We strongly recommend the use of circularly polarized lasers and repumping. As a rule of thumb, the bandwidth of laser radiation in MHz (at each line) should approximately equal the launched laser power in Watts divided by six, assuming a diffraction-limited spot size.

[1]  L. Andrews,et al.  Laser Beam Propagation Through Random Media , 1998 .

[2]  Arnaud Courcelle,et al.  A program to compute the two-step excitation of mesospheric sodium atoms for the Polychromatic Laser Guide Star Project , 2004, Comput. Phys. Commun..

[3]  B. Clemesha,et al.  The mesospheric sodium layer at 23°S: Nocturnal and seasonal variations , 1978 .

[4]  Margaret Robson Wright,et al.  An Introduction to Chemical Kinetics: Wright/An Introduction to Chemical Kinetics , 2004 .

[5]  Robert Q. Fugate,et al.  The Sodium LGS Brightness Model over the SOR , 2007 .

[6]  Brent L. Ellerbroek,et al.  LGS AO photon return simulations and laser requirements for the Gemini LGS AO program , 2000, Astronomical Telescopes and Instrumentation.

[7]  Robert Q. Fugate,et al.  Studies of a mesospheric sodium guidestar pumped by continuous-wave sum-frequency mixing of two Nd:YAG laser lines in lithium triborate , 2006, SPIE Defense + Commercial Sensing.

[8]  Robert Q. Fugate,et al.  Single Frequency Sodium Guidestar Excitation at the Starfire Optical Range , 2006 .

[9]  Paul B. Hays,et al.  An empirical model of the Earth's horizontal wind fields: HWM07 , 2008 .

[10]  S. P. Dmitriev,et al.  Spin exchange rate constant for collisions of metastable helium atoms with rubidium atoms , 2008 .

[11]  Robert Q. Fugate,et al.  Theory of continuous-wave excitation of the sodium beacon , 1999 .

[12]  Daniel A. Steck,et al.  Sodium D Line Data , 2003 .

[13]  Robert Q. Fugate,et al.  Characteristics of sodium guidestars created by the 50-watt FASOR and first closed-loop AO results at the Starfire Optical Range , 2006, SPIE Astronomical Telescopes + Instrumentation.

[14]  P W Milonni,et al.  Theory of mesospheric sodium fluorescence excited by pulse trains. , 1992, Applied optics.

[15]  Kelley,et al.  Detailed look at aspects of optical pumping in sodium. , 1985, Physical review. A, General physics.

[16]  Lee C. Bradley,et al.  Pulse-train excitation of sodium for use as a synthetic beacon , 1992 .

[17]  S. Chu,et al.  Optical molasses and multilevel atoms: theory , 1989 .

[18]  D. Fried Optical Resolution Through a Randomly Inhomogeneous Medium for Very Long and Very Short Exposures , 1966 .

[19]  Donald Gavel,et al.  Analysis of on-sky sodium profile data and implications for LGS AO wavefront sensing , 2008, Astronomical Telescopes + Instrumentation.

[20]  Paul Hickson,et al.  A large‐aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies , 2009 .

[21]  F. Schmidt,et al.  Relaxation of electron polarization for optically pumped rubidium atoms , 1998 .

[22]  W. Happer,et al.  An optical pumping primer , 1987 .

[23]  L. Anderson,et al.  Spin relaxation in an optically oriented sodium vapor , 1964 .

[24]  Robert Q. Fugate,et al.  Simple model, including recoil, for the brightness of sodium guide stars created from CW single frequency fasors and comparison to measurements , 2008, Astronomical Telescopes + Instrumentation.

[25]  Ronald Holzlöhner,et al.  Physical optics modeling and optimization of laser guide star propagation , 2008, Astronomical Telescopes + Instrumentation.

[26]  Ronald Holzlöhner,et al.  Dependence of sodium laser guide star photon return on the geomagnetic field , 2009 .

[27]  Edward L Cussler,et al.  Diffusion: Mass Transfer in Fluid Systems , 1984 .

[28]  A. Corney,et al.  Atomic and laser spectroscopy , 1977 .

[29]  Robert Q. Fugate,et al.  Analysis of measured photon returns from sodium beacons , 1998 .

[30]  Jack Drummond,et al.  Simulations of mesospheric sodium guidestar radiance , 2008, SPIE LASE.

[31]  Frederic Patat Observing During Bright Time: Tips and Tricks , 2004 .

[32]  T. Carver,et al.  Optical Pumping. , 1963, Science.

[33]  Margaret Robson Wright,et al.  Introduction to Chemical Kinetics , 2004 .

[34]  W. Happer,et al.  ATMOSPHERIC-TURBULENCE COMPENSATION BY RESONANT OPTICAL BACKSCATTERING FROM THE SODIUM LAYER IN THE UPPER ATMOSPHERE , 1994 .

[35]  N. Ressler,et al.  Measurement of Spin-Exchange Cross Sections for Cs 133 , Rb 87 , Rb 85 , K 39 , and Na 23 , 1969 .

[36]  Vincent Fesquet,et al.  Concept for polychromatic laser guide stars: one-photon excitation of the 4P3/2 level of a sodium atom. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  W. Gawlik,et al.  Resonant nonlinear magneto-optical effects in atoms , 2002, physics/0203077.

[38]  James R. Morris,et al.  Efficient excitation of a mesospheric sodium laser guide star by intermediate-duration pulses , 1994 .

[39]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[40]  H. Guillet de Chatellus,et al.  Return flux budget of polychromatic laser guide stars. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.