Integrated O, Fe, and Ti isotopic analysis elucidates multiple metal and fluid sources for magnetite from the Ernest Henry Iron oxide copper gold (IOCG) Deposit, Queensland, Australia

[1]  R. Mathur,et al.  A Chemical Separation and Measuring Technique for Titanium Isotopes for Titanium Ores and Iron-Rich Minerals , 2022, Minerals.

[2]  Jinlong Ma,et al.  Mass-dependent fractionation of titanium stable isotopes during intensive weathering of basalts , 2022, Earth and Planetary Science Letters.

[3]  H. Fan,et al.  Extreme iron isotope variation of pyrite in the Muping gold deposit, Jiaodong: Implication for tracing metal origin , 2021 .

[4]  R. Mathur,et al.  The Mina Justa Iron Oxide Copper-Gold (IOCG) Deposit, Peru: Constraints on Metal and Ore Fluid Sources , 2021, Economic Geology.

[5]  M. Reich,et al.  Formation of giant iron oxide-copper-gold deposits by superimposed, episodic hydrothermal pulses , 2021, Communications Earth & Environment.

[6]  Aleisha C. Johnson,et al.  Clues from Ab Initio Calculations on Titanium Isotopic Fractionation in Tholeiitic and Calc-Alkaline Magma Series , 2021, ACS Earth and Space Chemistry.

[7]  T. Pettke,et al.  Titanium isotopic compositions of bulk rocks and mineral separates from the Kos magmatic suite: Insights into fractional crystallization and magma mixing processes , 2021, Goldschmidt2021 abstracts.

[8]  F. Spear,et al.  Iron, magnesium, and titanium isotopic fractionations between garnet, ilmenite, fayalite, biotite, and tourmaline: Results from NRIXS, ab initio, and study of mineral separates from the Moosilauke metapelite , 2021, Geochimica et Cosmochimica Acta.

[9]  A. Heard,et al.  Titanium isotopes constrain a magmatic transition at the Hadean-Archean boundary in the Acasta Gneiss Complex , 2020, Science Advances.

[10]  M. Reich,et al.  A review of magnetite geochemistry of Chilean iron oxide-apatite (IOA) deposits and its implications for ore-forming processes , 2020, Ore Geology Reviews.

[11]  M. Reich,et al.  Geochemical and Isotopic Signature of Pyrite as a Proxy for Fluid Source and Evolution in the Candelaria-Punta del Cobre Iron Oxide Copper-Gold District, Chile , 2020, Economic Geology.

[12]  M. Reich,et al.  Triple Oxygen (δ18O, Δ17O), Hydrogen (δ2H), and Iron (δ56Fe) Stable Isotope Signatures Indicate a Silicate Magma Source and Magmatic-Hydrothermal Genesis for Magnetite Orebodies at El Laco, Chile , 2020 .

[13]  A. Simon,et al.  A Continuum from Iron Oxide Copper-Gold to Iron Oxide-Apatite Deposits: Evidence from Fe and O Stable Isotopes and Trace Element Chemistry of Magnetite , 2020, Economic Geology.

[14]  T. Wagner,et al.  Fluorite as indicator mineral in iron oxide-copper-gold systems: explaining the IOCG deposit diversity , 2020 .

[15]  M. Millet,et al.  Melt chemistry and redox conditions control titanium isotope fractionation during magmatic differentiation , 2020, Geochimica et Cosmochimica Acta.

[16]  Xiangkun Zhu,et al.  Titanium isotopic fractionation during magmatic differentiation , 2020, Contributions to Mineralogy and Petrology.

[17]  Y. Niu,et al.  Geochemistry and iron isotope systematics of coexisting Fe-bearing minerals in magmatic Fe Ti deposits: A case study of the Damiao titanomagnetite ore deposit, North China Craton , 2020 .

[18]  F. Torab,et al.  Triple oxygen isotope variations in magnetite from iron-oxide deposits, central Iran, record magmatic fluid interaction with evaporite and carbonate host rocks , 2020 .

[19]  M. Reich,et al.  Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits , 2020, Mineralium Deposita.

[20]  I. Bindeman,et al.  Standardizing the reporting of Δʹ17O data from high precision oxygen triple-isotope ratio measurements of silicate rocks and minerals , 2020 .

[21]  Aleisha C. Johnson,et al.  Titanium isotopic fractionation in Kilauea Iki lava lake driven by oxide crystallization , 2019, Geochimica et Cosmochimica Acta.

[22]  M. Newville,et al.  Solubility and speciation of iron in hydrothermal fluids , 2019, Geochimica et Cosmochimica Acta.

[23]  V. Troll,et al.  Global Fe–O isotope correlation reveals magmatic origin of Kiruna-type apatite-iron-oxide ores , 2019, Nature Communications.

[24]  M. Reich,et al.  In-situ iron isotope analyses reveal igneous and magmatic-hydrothermal growth of magnetite at the Los Colorados Kiruna-type iron oxide-apatite deposit, Chile , 2019, American Mineralogist.

[25]  F. Robert,et al.  Titanium isotopes as a tracer for the plume or island arc affinity of felsic rocks , 2019, Proceedings of the National Academy of Sciences.

[26]  D. Morata,et al.  Formation of massive iron deposits linked to explosive volcanic eruptions , 2018, Scientific Reports.

[27]  S. Glorie,et al.  Geology, Apatite Geochronology, and Geochemistry of the Ernest Henry Inter-Lens: Implications for a Re-Examined Deposit Model , 2018, Minerals.

[28]  Z. Sharp,et al.  Mass-dependent triple oxygen isotope variations in terrestrial materials , 2018, Geochemical Perspectives Letters.

[29]  C. Heinrich,et al.  Hematite Breccia-Hosted Iron Oxide Copper-Gold Deposits Require Magmatic Fluid Components Exposed to Atmospheric Oxidation: Evidence from Prominent Hill, Gawler Craton, South Australia , 2018 .

[30]  M. Reich,et al.  A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile , 2018, Mineralium Deposita.

[31]  A. Pring,et al.  Chemical and textural interpretation of late-stage coffinite and brannerite from the Olympic Dam IOCG-Ag-U deposit , 2017, Mineralogical Magazine.

[32]  A. Boyce,et al.  A magmatic source of hydrothermal sulfur for the Prominent Hill deposit and associated prospects in the Olympic iron oxide copper-gold (IOCG) province of South Australia , 2017 .

[33]  A. Bekker,et al.  Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago , 2017, Science.

[34]  Ying Xia,et al.  Iron and Zinc isotope fractionation during magmatism in the continental crust: evidence from bimodal volcanic rocks from Hailar basin, NE China , 2017 .

[35]  A. Bekker,et al.  Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history , 2017 .

[36]  J. VanTongeren,et al.  Iron isotopic evolution during fractional crystallization of the uppermost Bushveld Complex layered mafic intrusion , 2017 .

[37]  J. Brugger,et al.  A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits? , 2016 .

[38]  A. Simon,et al.  Iron and Oxygen Isotope Signatures of the Pea Ridge and Pilot Knob Magnetite-Apatite Deposits, Southeast Missouri, USA , 2016 .

[39]  C. Macpherson,et al.  Titanium stable isotope investigation of magmatic processes on the Earth and Moon , 2016 .

[40]  E. Nakamura,et al.  The oxygen isotope composition of San Carlos olivine on the VSMOW2-SLAP2 scale. , 2016, Rapid communications in mass spectrometry : RCM.

[41]  L. Ciacci,et al.  Copper demand, supply, and associated energy use to 2050 , 2016 .

[42]  S. Brantley,et al.  Investigation of a diabase-derived regolith profile from Pennsylvania: mineralogy, chemistry and Fe isotope fractionation. , 2016 .

[43]  I. Bindeman,et al.  Oxygen isotope thermometry reveals high magmatic temperatures and short residence times in Yellowstone and other hot-dry rhyolites compared to cold-wet systems , 2016 .

[44]  M. Reich,et al.  Fe–O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits , 2016 .

[45]  G. Shen,et al.  Rutile solubility in NaF–NaCl–KCl-bearing aqueous fluids at 0.5–2.79 GPa and 250–650 °C , 2016 .

[46]  M. Millet,et al.  Isotopic evidence for iron mobility during subduction , 2016 .

[47]  M. Reich,et al.  Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions , 2015 .

[48]  Yusheng Zhao,et al.  The mobility of Nb in rutile-saturated NaCl- and NaF-bearing aqueous fluids from 1–6.5 GPa and 300–800 °C , 2015 .

[49]  Song-Yue Yu,et al.  Iron isotope fractionation during crystallization and sub-solidus re-equilibration: Constraints from the Baima mafic layered intrusion, SW China , 2014 .

[50]  F. Holtz,et al.  In-situ Fe isotope ratio determination in Fe–Ti oxides and sulfides from drilled gabbros and basalt from the IODP Hole 1256D in the eastern equatorial Pacific , 2014 .

[51]  P. Sossi,et al.  Redox-controlled iron isotope fractionation during magmatic differentiation: an example from the Red Hill intrusion, S. Tasmania , 2012, Contributions to Mineralogy and Petrology.

[52]  D. Varshney,et al.  Structural, transport and spectroscopic properties of Ti4+ substituted magnetite: Fe3−xTixO4 , 2012 .

[53]  L. Hutton,et al.  Mineral Systems in the Mount Isa Inlier , 2012 .

[54]  L. Monteiro,et al.  Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide–copper–gold deposit, Carajás Mineral Province (Brazil): Implications for ore genesis , 2012, Mineralium Deposita.

[55]  A. Davis,et al.  A new method for MC-ICPMS measurement of titanium isotopic composition: Identification of correlated isotope anomalies in meteorites , 2011 .

[56]  R. Pattrick,et al.  Fe site occupancy in magnetite-ulvöspinel solid solutions: A new approach using X-ray magnetic circular dichroism , 2010 .

[57]  D. Weiss,et al.  Iron isotope fractionation during leaching of granite and basalt by hydrochloric and oxalic acids , 2009 .

[58]  B. Beard,et al.  The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high 56Fe/54Fe ratios in siliceous igneous rocks , 2008 .

[59]  L. Monteiro,et al.  Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide copper-gold deposits, Carajás Mineral Province (Brazil) , 2008 .

[60]  C. Ryan,et al.  Mixed messages in iron oxide–copper–gold systems of the Cloncurry district, Australia: insights from PIXE analysis of halogens and copper in fluid inclusions , 2008 .

[61]  N. Oliver,et al.  Constraints on hydrothermal fluid pathways within Mary Kathleen Group stratigraphy of the Cloncurry iron-oxide-copper-gold District, Australia , 2008 .

[62]  Geordie Mark,et al.  The protracted hydrothermal evolution of the Mount Isa Eastern Succession: A review and tectonic implications , 2008 .

[63]  J. Austin,et al.  The 1800-1610 Ma stratigraphic and magmatic history of the Eastern Succession, Mount Isa Inlier, and correlations with adjacent Paleoproterozoic terranes , 2008 .

[64]  E. Schauble,et al.  Modeling the effects of bond environment on equilibrium iron isotope fractionation in ferric aquo-chloro complexes , 2008 .

[65]  M. Kendrick,et al.  Metamorphic fluid origins in the Osborne Fe oxide–Cu–Au deposit, Australia: evidence from noble gases and halogens , 2008 .

[66]  E. Bastrakov,et al.  Fluid Evolution and Origins of Iron Oxide Cu-Au Prospects in the Olympic Dam District, Gawler Craton, South Australia , 2007 .

[67]  R. Clayton,et al.  Equilibrium Iron Isotope Fractionation Factors of Minerals: Reevaluation from the Data of Nuclear Inelastic Resonant X-ray Scattering and Mossbauer Spectroscopy , 2007 .

[68]  F. Blanckenburg,et al.  Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation , 2007 .

[69]  T. K. Kyser,et al.  The Mantoverde Iron Oxide-Copper-Gold District, III Región, Chile: The Role of Regionally Derived, Nonmagmatic Fluids in Chalcopyrite Mineralization , 2007 .

[70]  Geordie Mark,et al.  Mid-crustal fluid mixing in a Proterozoic Fe oxide–Cu–Au deposit, Ernest Henry, Australia: Evidence from Ar, Kr, Xe, Cl, Br, and I , 2007 .

[71]  T. Baker,et al.  Granite-related overpressure and volatile release in the mid crust: fluidized breccias from the Cloncurry District, Australia , 2006 .

[72]  B. Ryzhenko,et al.  Titanium complexation in hydrothermal systems , 2006 .

[73]  R. Cliff,et al.  Origin of fluids in iron oxide–copper–gold deposits: constraints from δ37Cl, 87Sr/86Sri and Cl/Br , 2006 .

[74]  Peter J. Pollard,et al.  An intrusion-related origin for Cu–Au mineralization in iron oxide–copper–gold (IOCG) provinces , 2006 .

[75]  Geordie Mark,et al.  Insights into the genesis and diversity of epigenetic Cu – Au mineralisation in the Cloncurry district, Mt Isa Inlier, northwest Queensland , 2006 .

[76]  Geordie Mark,et al.  Mineralogical and chemical evolution of the Ernest Henry Fe oxide–Cu–Au ore system, Cloncurry district, northwest Queensland, Australia , 2006 .

[77]  S. Brantley,et al.  Cu isotopic fractionation in the supergene environment with and without bacteria , 2005 .

[78]  T. Pettke,et al.  Magnetite solubility and iron transport in magmatic-hydrothermal environments , 2004 .

[79]  R. Sillitoe Iron oxide-copper-gold deposits: an Andean view , 2003 .

[80]  A. Makishima,et al.  High precision measurement of titanium isotope ratios by plasma source mass spectrometry , 2002 .

[81]  A. Anbar,et al.  Iron isotopes in hot springs along the Juan de Fuca Ridge , 2001 .

[82]  G. Rossman,et al.  Theoretical estimates of equilibrium Fe-isotope fractionations from vibrational spectroscopy , 2001 .

[83]  W. Griffin,et al.  Trace‐element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland , 2001 .

[84]  T. Baker,et al.  Radiogenic and Stable Isotope Constraints on the Genesis of the Eloise Cu- Au Deposit, Cloncurry District, Northwest Queensland , 2001 .

[85]  C. Ryan,et al.  Geochemistry of hypersaline fluid inclusions from the Starra (Fe Oxide)-Au-Cu deposit, Cloncurry district, Queensland , 2001 .

[86]  Francis Albarède,et al.  Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry , 1999 .

[87]  I. Cartwright,et al.  Stable isotope evidence for the origin of the Mesoproterozoic Starra Au-Cu deposit, Cloncurry District, Northwest Queensland , 1998 .

[88]  L. Wyborn Younger ca 1500 Ma granites of the Williams and Naraku Batholiths, Cloncurry district, eastern Mt Isa Inlier: Geochemistry, origin, metallogenic significance and exploration indicators∗ , 1998 .

[89]  R. Page,et al.  Aspects of geochronology and crustal evolution in the Eastern Fold Belt, Mt Isa Inlier∗ , 1998 .

[90]  M. Barton,et al.  Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization , 1996 .

[91]  Michael W. Webb,et al.  The geophysics of the Ernest Henry Cu-Au deposit (N.W.) Qld , 1995 .

[92]  Patrick J. Williams,et al.  Giant metasomatic system formed during exhumation of mid‐crustal Proterozoic rocks in the vicinity of the Cloncurry Fault, northwest Queensland , 1995 .

[93]  M. Reed,et al.  Olympic Dam ore genesis; a fluid-mixing model , 1995 .

[94]  M. R. V. Baalen Titanium mobility in metamorphic systems: a review , 1993 .

[95]  N. Oreskes,et al.  Geological characteristics and tectonic setting of proterozoic iron oxide (CuUAuREE) deposits , 1992 .

[96]  N. Oreskes,et al.  Origin of hydrothermal fluids at Olympic Dam; preliminary results from fluid inclusions and stable isotopes , 1992 .

[97]  H. Taylor The oxygen isotope geochemistry of igneous rocks , 1968 .

[98]  D. Groves,et al.  Mineral systems: Their advantages in terms of developing holistic genetic models and for target generation in global mineral exploration , 2022, Geosystems and Geoenvironment.

[99]  I. Bindeman Triple Oxygen Isotopes in Evolving Continental Crust, Granites, and Clastic Sediments , 2021 .

[100]  M. Reich,et al.  Kiruna-Type Iron Oxide-Apatite (IOA) and Iron Oxide Copper-Gold (IOCG) Deposits Form by a Combination of Igneous and Magmatic-Hydrothermal Processes: Evidence from the Chilean Iron Belt , 2018 .

[101]  P. Sossi,et al.  Fe isotopes and the contrasting petrogenesis of A-, I- and S-type granite , 2015 .

[102]  M. Barton Iron Oxide(–Cu–Au–REE–P–Ag–U–Co) Systems , 2014 .

[103]  T. Blenkinsop,et al.  Physical and chemical characteristics of the Ernest Henry iron oxide copper gold deposit, Australia; implications for IOGC genesis , 2010 .

[104]  E. Roden,et al.  Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis , 2008 .

[105]  R. Creaser,et al.  Yardea Dacite—Large-volume, high-temperature felsic volcanism from the Middle Proterozoic of South Australia , 1991 .

[106]  J. R. O'neil,et al.  Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks, Osgood Mountains, Nevada , 1977 .