A survey of homotopy methods for smooth mappings
暂无分享,去创建一个
[1] J. Yorke,et al. Finding zeroes of maps: homotopy methods that are constructive with probability one , 1978 .
[2] G. A. Thurston. Continuation of Newton’s Method Through Bifurcation Points , 1969 .
[3] William F. Schmidt,et al. Adaptive step size selection for use with the continuation method , 1978 .
[4] M. Prüfer,et al. The Leray-Schauder continuation method is a constructive element in the numerical study of nonlinear eigenvalue and bifurcation problems , 1979 .
[5] G. Meyer. On Solving Nonlinear Equations with a One-Parameter Operator Imbedding , 1968 .
[6] P. Anselone,et al. AN EXTENSION OF THE NEWTON-KANTOROVIC METHOD FOR SOLVING NONLINEAR EQUATIONS, , 1966 .
[7] R. B. Kearfott. A derivative-free arc continuation method and a bifurcation technique , 1981 .
[8] Klaus Böhmer,et al. Discrete correction methods for operator equations , 1981 .
[9] R. Kellogg,et al. A Constructive Proof of the Brouwer Fixed-Point Theorem and Computational Results , 1976 .
[10] J. Yorke,et al. The homotopy continuation method: numerically implementable topological procedures , 1978 .
[11] P. Deuflhard. A stepsize control for continuation methods and its special application to multiple shooting techniques , 1979 .
[12] E. Bohl,et al. On the bifurcation diagram of discrete analogues for ordinary bifurcation problems , 1979 .
[13] F. H. Branin. Widely convergent method for finding multiple solutions of simultaneous nonlinear equations , 1972 .
[14] K. Georg. On Tracing an Implicitly Defined Curve by Quasi-Newton Steps and Calculating Bifurcation by Local Perturbations , 1981 .
[15] W. I. Zangwill,et al. Global Continuation Methods for Finding all Solutions to Polynomial Systems of Equations in N Variables , 1980 .
[16] J. Milnor. Topology from the differentiable viewpoint , 1965 .
[17] E. Riks. The Application of Newton's Method to the Problem of Elastic Stability , 1972 .
[18] Layne T. Watson,et al. Algorithm 555: Chow-Yorke Algorithm for Fixed Points or Zeros of C2 Maps [C5] , 1980, TOMS.
[19] Edmond Lahaye,et al. Une méthode de résolution d'une catégorie d'équations transcendantes , 1934 .
[20] H. B. Keller. Global Homotopies and Newton Methods , 1978 .
[21] Paul H. Rabinowitz,et al. Some global results for nonlinear eigenvalue problems , 1971 .
[22] Peter R. Turner,et al. Topics in Numerical Analysis , 1982 .
[23] H. Peitgen,et al. Nonlinear elliptic boundary value problems versus their finite difference approximations: numerically irrelevant solutions. , 1981 .
[24] P. Deuflhard,et al. A modified continuation method for the numerical solution of nonlinear two-point boundary value problems by shooting techniques , 1976 .
[25] K. Georg. Numerical integration of the Davidenko equation , 1981 .
[26] H. Weber. Numerische Behandlung von Verzweigungsproblemen bei gewöhnlichen Differentialgleichungen , 1979 .
[27] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[28] S. Smale. Convergent process of price adjust-ment and global newton methods , 1976 .
[29] E. Bohl. Chord techniques and Newton's method for discrete bifurcation problems , 1980 .
[30] E. L. Allgower. On a Discretization of y ″ + λ y k = 0 , 1975 .
[31] W. Gähler. R. Abraham and J. Robbin, Transversal Mappings and Flows. X + 161 S. m. Fig. New York/Amsterdam 1967. W. A. Benjamin, Inc. Preis geb. $ 12,50 , 1969 .
[32] C. D. Boor,et al. Recent Advances in Numerical Analysis. , 1982 .
[33] W. Rheinboldt. Numerical methods for a class of nite dimensional bifur-cation problems , 1978 .
[34] F. Drexler. Eine Methode zur berechnung sämtlicher Lösungen von Polynomgleichungssystemen , 1977 .
[35] R. Gaines,et al. DIFFERENCE EQUATIONS ASSOCIATED WITH BOUNDARY VALUE PROBLEMS FOR SECOND ORDER NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS , 1974 .
[36] L. Chua,et al. A switching-parameter algorithm for finding multiple solutions of nonlinear resistive circuits , 1976 .
[37] E. Allgower,et al. Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations , 1980 .
[38] L. Watson. An Algorithm That is Globally Convergent with Probability One for a Class of Nonlinear Two-Point Boundary Value Problems , 1979 .
[39] E. Wasserstrom. Numerical Solutions by the Continuation Method , 1973 .
[40] H. Schwetlick,et al. Zur Lösung parameterabhängiger nichtlinearer Gleichungen mit singulären Jacobi-Matrizen , 1978 .
[41] L. Shampine,et al. Computer solution of ordinary differential equations : the initial value problem , 1975 .
[42] W. Langford. Numerical solution of bifurcation problems for ordinary differential equations , 1977 .
[43] C. Haselgrove,et al. The Solution of Non-Linear Equations and of Differential Equations with Two-Point Boundary Conditions , 1961, Comput. J..
[44] L. Watson. A globally convergent algorithm for computing fixed points of C2 maps , 1979 .
[45] S. Smale. Global analysis and economics VI: Geometric analysis of Pareto Optima and price equilibria under classical hypotheses , 1976 .
[46] H. Keller,et al. Perturbed bifurcation theory , 1973 .
[47] H. Peitgen,et al. Topological Perturbations in the Numerical Study of Nonlinear Eigenvalue and Bifurcation Problems , 1980 .
[48] Werner C. Rheinboldt,et al. Solution Fields of Nonlinear Equations and Continuation Methods , 1980 .
[49] M. Crandall,et al. Bifurcation from simple eigenvalues , 1971 .
[50] M. Hirsch,et al. On Algorithms for Solving f(x)=0 , 1979 .