A new recurrent 9q34 duplication in pediatric T-cell acute lymphoblastic leukemia

[1]  Y. Hayashi,et al.  Mutations of the Notch1 gene in T-cell acute lymphoblastic leukemia: analysis in adults and children , 2005, Leukemia.

[2]  Peter Marynen,et al.  Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32). , 2005, Blood.

[3]  P. Marynen,et al.  A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias , 2005, Leukemia.

[4]  J. Aster,et al.  T cell acute lymphoblastic leukemia/lymphoma: a human cancer commonly associated with aberrant NOTCH1 signaling , 2004, Current opinion in hematology.

[5]  Andrew P. Weng,et al.  Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia , 2004, Science.

[6]  A. Ferrando,et al.  Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia , 2004, Nature Genetics.

[7]  U. Lendahl,et al.  Notch signaling in development and disease. , 2004, Seminars in cancer biology.

[8]  L. Feuk,et al.  Detection of large-scale variation in the human genome , 2004, Nature Genetics.

[9]  Cheng Cheng,et al.  Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. , 2004, The New England journal of medicine.

[10]  N. Carter,et al.  High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization , 2004, Oncogene.

[11]  Sandya Liyanarachchi,et al.  Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21: Amplification discloses overexpression of APP, ETS2, and ERG genes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Freddy Radtke,et al.  Notch regulation of lymphocyte development and function , 2004, Nature Immunology.

[13]  Gunnar Wrobel,et al.  Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  C. Guidos,et al.  Notch signaling in development and disease , 2003, Clinical genetics.

[15]  Daniel Pinkel,et al.  Genomic microarrays in human genetic disease and cancer. , 2003, Human molecular genetics.

[16]  E. Macintyre,et al.  CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRγδ lineage , 2003 .

[17]  Ajay N. Jain,et al.  Genome-wide-array-based comparative genomic hybridization reveals genetic homogeneity and frequent copy number increases encompassing CCNE1 in Fallopian tube carcinoma , 2003, Oncogene.

[18]  Wen-Lin Kuo,et al.  Array-based comparative genomic hybridization for genome-wide screening of DNA copy number in bladder tumors. , 2003, Cancer research.

[19]  S. Armstrong,et al.  Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. , 2003, Blood.

[20]  Ajay N. Jain,et al.  Array-based comparative genomic hybridization for the differential diagnosis of renal cell cancer. , 2002, Cancer research.

[21]  E. Lander,et al.  Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. , 2002, Cancer cell.

[22]  R. Heilig,et al.  A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia , 2001, Leukemia.

[23]  J. Raemaekers,et al.  A novel method to compensate for different amplification efficiencies between patient DNA samples in quantitative real-time PCR. , 2001, The Journal of molecular diagnostics : JMD.

[24]  W. Kuo,et al.  High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays , 1998, Nature Genetics.

[25]  B. Quesnel,et al.  p16ink4a gene and hematological malignancies. , 1996, Leukemia & lymphoma.

[26]  R. Espinosa,et al.  TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[27]  S. Raimondi,et al.  c-tal, a helix-loop-helix protein, is juxtaposed to the T-cell receptor-beta chain gene by a reciprocal chromosomal translocation: t(1;7)(p32;q35). , 1991, Blood.

[28]  W. Ludwig,et al.  TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). , 1991, Oncogene.

[29]  J. Sklar,et al.  TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms , 1991, Cell.

[30]  M. Cleary,et al.  lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif , 1989, Cell.

[31]  S. Korsmeyer,et al.  The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein , 1989, Molecular and cellular biology.

[32]  Patrick G Buckley,et al.  Genomic microarrays in the spotlight. , 2004, Drug discovery today.

[33]  Ching-Hon Pui,et al.  Acute lymphoblastic leukemia. , 2004, The New England journal of medicine.

[34]  W. Kern,et al.  Satelite Symposium V, Meet-the-Professor Sessions I and II, Main Sessions I-IX , 2004, Annals of Hematology.

[35]  E. Macintyre,et al.  CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRgammadelta lineage. , 2003, Blood.

[36]  A. Wu,et al.  Sjögren's syndrome. , 1994, Seminars in dermatology.

[37]  S. Raimondi,et al.  A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14). , 1991, Blood.