Brownian motion of a self-propelled particle.

Overdamped Brownian motion of a self-propelled particle is studied by solving the Langevin equation analytically. On top of translational and rotational diffusion, in the context of the presented model, the 'active' particle is driven along its internal orientation axis. We calculate the first four moments of the probability distribution function for displacements as a function of time for a spherical particle with isotropic translational diffusion, as well as for an anisotropic ellipsoidal particle. In both cases the translational and rotational motion is either unconfined or confined to one or two dimensions. A significant non-Gaussian behaviour at finite times t is signalled by a non-vanishing kurtosis γ(t). To delimit the super-diffusive regime, which occurs at intermediate times, two timescales are identified. For certain model situations a characteristic t3 behaviour of the mean-square displacement is observed. Comparing the dynamics of real and artificial microswimmers, like bacteria or catalytically driven Janus particles, to our analytical expressions reveals whether their motion is Brownian or not.

[1]  Pawel Romanczuk,et al.  Collective motion due to individual escape and pursuit response. , 2008, Physical review letters.

[2]  G. Oshanin,et al.  Confinement effects on diffusiophoretic self-propellers. , 2009, The Journal of chemical physics.

[3]  Jean Baudry,et al.  Do magnetic micro-swimmers move like eukaryotic cells? , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  H. Stark,et al.  Simulation of a model microswimmer , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  H. Löwen,et al.  Dynamics of a Brownian circle swimmer. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  D. Woolley,et al.  Motility of spermatozoa at surfaces. , 2003, Reproduction.

[7]  Gerhard Gompper,et al.  Self-propelled rods near surfaces , 2009, 0901.2041.

[8]  Y Wang,et al.  Autonomously moving nanorods at a viscous interface. , 2006, Nano letters.

[9]  A. Triller,et al.  Diffusion trajectory of an asymmetric object: information overlooked by the mean square displacement. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  H. H. Wensink,et al.  Aggregation of self-propelled colloidal rods near confining walls. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[12]  Gerhard Gompper,et al.  Mesoscale simulations of hydrodynamic squirmer interactions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Jeffrey S. Guasto,et al.  Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. , 2009, Physical review letters.

[14]  Jan K. G. Dhont,et al.  An introduction to dynamics of colloids , 1996 .

[15]  B. Lindner,et al.  Critical asymmetry for giant diffusion of active Brownian particles. , 2008, Physical review letters.

[16]  H. Berg,et al.  Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility, microchannel plate, and light scattering. , 1990, Biophysical journal.

[17]  Lar,et al.  Reproduction , 1975, Comprehensive Virology.

[18]  T. Obata,et al.  Fluctuations in human's walking (II) , 2005 .

[19]  Eric Lauga,et al.  Hydrodynamic attraction of swimming microorganisms by surfaces. , 2008, Physical review letters.

[20]  F. Perrin,et al.  Mouvement brownien d'un ellipsoide - I. Dispersion diélectrique pour des molécules ellipsoidales , 1934 .

[21]  Erwin Frey,et al.  Critical dynamics of ballistic and Brownian particles in a heterogeneous environment. , 2007, The Journal of chemical physics.

[22]  Marcus L. Roper,et al.  Microscopic artificial swimmers , 2005, Nature.

[23]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[24]  Erwin Frey,et al.  Effective Perrin theory for the anisotropic diffusion of a strongly hindered rod , 2008, EPL (Europhysics Letters).

[25]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[26]  H. Lowen,et al.  Non-Gaussian behaviour of a self-propelled particle on a substrate , 2009, 0906.3418.

[27]  Ramin Golestanian,et al.  Self-motile colloidal particles: from directed propulsion to random walk. , 2007, Physical review letters.

[28]  P. Morse Annals of Physics , 1957, Nature.

[29]  Hartmut Löwen,et al.  Clockwise-directional circle swimmer moves counter-clockwise in Petri dish- and ring-like confinements , 2009 .

[30]  M. Cates,et al.  Sedimentation, trapping, and rectification of dilute bacteria , 2009, 0903.3247.

[31]  P. Leiderer,et al.  Various driving mechanisms for generating motion of colloidal particles , 2008 .

[32]  J. Toner,et al.  Hydrodynamics and phases of flocks , 2005 .

[33]  Arjun G Yodh,et al.  Quasi-two-dimensional diffusion of single ellipsoids: aspect ratio and confinement effects. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  George M Whitesides,et al.  Swimming in circles: motion of bacteria near solid boundaries. , 2005, Biophysical journal.

[35]  H. Lekkerkerker,et al.  Long-time translational self-diffusion in isotropic and nematic dispersions of colloidal rods , 1998 .

[36]  R. Pecora,et al.  General theory of dynamic light scattering from cylindrically symmetric particles with translational‐rotational coupling , 1985 .

[37]  S. Egelhaaf,et al.  Combined holographic-mechanical optical tweezers: construction, optimization, and calibration. , 2009, The Review of scientific instruments.

[38]  D W Howell,et al.  Dynamics of electrostatically driven granular media: effects of humidity. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  I. Aranson,et al.  Magnetically driven surface mixing. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Christophe Ybert,et al.  Sedimentation and effective temperature of active colloidal suspensions. , 2010, Physical review letters.

[41]  Fernando Peruani,et al.  Self-propelled particles with fluctuating speed and direction of motion in two dimensions. , 2007, Physical review letters.

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  Clemens Bechinger,et al.  Single-file diffusion of colloids in one-dimensional channels. , 2000, Physical review letters.

[44]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[45]  Yu-Guo Tao,et al.  Brownian dynamics simulations of the self- and collective rotational diffusion coefficients of rigid long thin rods. , 2005, The Journal of chemical physics.

[46]  H. Lekkerkerker,et al.  Orientation dependent Stokes drag in a colloidal liquid crystal. , 2008, Soft matter.

[47]  Takao Ohta,et al.  Deformable self-propelled particles. , 2008, Physical review letters.

[48]  Robert Austin,et al.  A Wall of Funnels Concentrates Swimming Bacteria , 2007, Journal of bacteriology.

[49]  Lev S Tsimring,et al.  Swarming and swirling in self-propelled polar granular rods. , 2007, Physical review letters.

[50]  Albert Einstein,et al.  Eine neue Bestimmung der Moleküldimensionen [AdP 19, 289 (1906)] , 2005 .

[51]  G. Nägele,et al.  On the dynamics and structure of charge-stabilized suspensions , 1996 .

[52]  Z. Nussinov,et al.  Rectification of swimming bacteria and self-driven particle systems by arrays of asymmetric barriers. , 2007, Physical review letters.

[53]  F. Jülicher,et al.  Steering chiral swimmers along noisy helical paths. , 2009, Physical review letters.

[54]  F. Jülicher,et al.  The stochastic dance of circling sperm cells: sperm chemotaxis in the plane , 2008 .

[55]  D. Turner Radium , 1909, Transactions. Medico-Chirurgical Society of Edinburgh.

[56]  M. Nobili,et al.  Brownian Motion of an Ellipsoid , 2006, Science.

[57]  Piotr Garstecki,et al.  Escherichia coli swim on the right-hand side , 2005, Nature.

[58]  Takuji Ishikawa,et al.  Dancing volvox: hydrodynamic bound states of swimming algae. , 2009, Physical review letters.

[59]  Andreas Deutsch,et al.  Nonequilibrium clustering of self-propelled rods. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  T. Powers,et al.  The hydrodynamics of swimming microorganisms , 2008, 0812.2887.

[61]  Löwen Brownian dynamics of hard spherocylinders. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[62]  Jonathon Howard,et al.  A Self-Organized Vortex Array of Hydrodynamically Entrained Sperm Cells , 2005, Science.

[63]  Werner Ebeling,et al.  Excitation of rotational modes in two-dimensional systems of driven Brownian particles. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  J. Theriot,et al.  A kinematic description of the trajectories of Listeria monocytogenes propelled by actin comet tails , 2007, Proceedings of the National Academy of Sciences.

[65]  J. Yeomans,et al.  Hydrodynamics of linked sphere model swimmers , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[66]  P. Fischer,et al.  Controlled propulsion of artificial magnetic nanostructured propellers. , 2009, Nano letters.

[67]  Klein,et al.  Dynamical correlations in suspensions of charged rodlike macromolecules. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[68]  J. Dunkel,et al.  Noisy swimming at low Reynolds numbers. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  F. Perrin,et al.  Mouvement Brownien d'un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales , 1936 .

[70]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[71]  H. Koser,et al.  Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. , 2007, Physical review letters.

[72]  T. Lubensky,et al.  Dynamics of gas-fluidized granular rods. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  E. Gauger,et al.  Numerical study of a microscopic artificial swimmer. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  Erwin Frey,et al.  Entangled dynamics of a stiff polymer. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  R. Grima,et al.  Brownian motion of an asymmetrical particle in a potential field. , 2007, The Journal of chemical physics.

[76]  G. Gompper,et al.  Hydrodynamics of sperm cells near surfaces. , 2010, Biophysical journal.

[77]  V. Lobaskin,et al.  Brownian dynamics of a microswimmer , 2007, 0709.0792.

[78]  J. Ralston,et al.  Phoretic motion of spheroidal particles due to self-generated solute gradients , 2010, The European physical journal. E, Soft matter.

[79]  T. Ohta,et al.  Deformable self-propelled particles with a global coupling. , 2010, Chaos.

[80]  Ramin Golestanian,et al.  Anomalous diffusion of symmetric and asymmetric active colloids. , 2009, Physical review letters.

[81]  W. Ebeling,et al.  Dynamics of individuals and swarms with shot noise induced by stochastic food supply , 2009 .

[82]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[83]  P. M. Biesheuvel,et al.  Non-Gaussian curvature distribution of actin-propelled biomimetic colloid trajectories , 2008, European Biophysics Journal.