Two-Level Method Based on Finite Element and Crank-Nicolson Extrapolation for the Time-Dependent Navier-Stokes Equations

A fully discrete two-level finite element method (the two-level method) is presented for solving the two-dimensional time-dependent Navier--Stokes problem. The method requires a Crank--Nicolson extrapolation solution $(u_{H,\tau_0},p_{H,\tau_0})$ on a spatial-time coarse grid $J_{H,\tau_0}$ and a backward Euler solution $(u^{h,\tau},p^{h,\tau})$ on a space-time fine grid $J_{h,\tau}$. The error estimates of optimal order of the discrete solution for the two-level method are derived. Compared with the standard Crank--Nicolson extrapolation method (the one-level method) based on a space-time fine grid $J_{h,\tau}$, the two-level method is of the error estimates of the same order as the one-level method in the H1-norm for velocity and the L2-norm for pressure. However, the two-level method involves much less work than the one-level method.

[1]  Yinnian He,et al.  Convergence and stability of finite element nonlinear Galerkin method for the Navier-Stokes equations , 1998 .

[2]  Vivette Girault,et al.  Two-grid finite-element schemes for the transient Navier-Stokes problem , 2001 .

[3]  R. Kellogg,et al.  A regularity result for the Stokes problem in a convex polygon , 1976 .

[4]  Jinchao Xu,et al.  Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .

[5]  William Layton,et al.  A posteriori error estimation for two level discretizations of flows of electrically conducting, incompressible fluids , 1996 .

[6]  William Layton,et al.  A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations , 1996 .

[7]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[8]  J. C. Simo,et al.  Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations , 1994 .

[9]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[10]  William Layton,et al.  A two-level discretization method for the Navier-Stokes equations , 1993 .

[11]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[12]  V. Girault,et al.  Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. , 2001 .

[13]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[14]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[15]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .

[16]  Yanping Lin,et al.  A priori L 2 error estimates for finite-element methods for nonlinear diffusion equations with memory , 1990 .

[17]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[18]  M. Marion,et al.  Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations , 1994 .

[19]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[20]  O. Pironneau,et al.  Error estimates for finite element method solution of the Stokes problem in the primitive variables , 1979 .

[21]  R. Temam,et al.  Nonlinear Galerkin methods: The finite elements case , 1990 .

[22]  Endre Süli,et al.  Approximation of the global attractor for the incompressible Navier–Stokes equations , 2000 .

[23]  J. C. Simo,et al.  Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .

[24]  Ohannes A. Karakashian,et al.  On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations , 1982 .

[25]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[26]  Stig Larsson,et al.  The long-time behavior of finite-element approximations of solutions of semilinear parabolic problems , 1989 .

[27]  Yanping Lin,et al.  Galerkin methods for nonlinear parabolic integrodifferential equations with nonlinear boundary conditions , 1990 .

[28]  Maxim A. Olshanskii,et al.  Two-level method and some a priori estimates in unsteady Navier—Stokes calculations , 1999 .

[29]  Christine Bernardi,et al.  A Conforming Finite Element Method for the Time-Dependent Navier–Stokes Equations , 1985 .

[30]  Jie Shen Long time stability and convergence for fully discrete nonlinear galerkin methods , 1990 .

[31]  J. Douglas,et al.  Galerkin Methods for Parabolic Equations , 1970 .

[32]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[33]  Lutz Tobiska,et al.  A Two-Level Method with Backtracking for the Navier--Stokes Equations , 1998 .

[34]  Graeme Fairweather,et al.  Three level Galerkin methods for parabolic equations , 1974 .