Using relaxation technique for region-based object recognition

Abstract We address the problem of object recognition in computer vision. We represent each model and the scene in the form of attributed relational graph (ARG). A multiple region representation is provided at each node of the scene ARG to increase the representation reliability. The process of matching the scene ARG against the stored models is facilitated by a novel method for identifying the most probable representation from among the multiple candidates. The scene and model graph matching is accomplished using probabilistic relaxation which has been modified to minimise the label clutter. The experimental results obtained on real data demonstrate promising performance of the proposed recognition system.

[1]  William J. Christmas,et al.  Structural Matching in Computer Vision Using Probabilistic Relaxation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Ali Shokoufandeh,et al.  View-based object recognition using saliency maps , 1999, Image Vis. Comput..

[3]  Edwin R. Hancock,et al.  Deterministic search for relational graph matching , 1999, Pattern Recognit..

[4]  Robert M. Haralick,et al.  A Metric for Comparing Relational Descriptions , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Charles R. Dyer,et al.  Model-based recognition in robot vision , 1986, CSUR.

[6]  Stan Z. Li,et al.  Matching: Invariant to translations, rotations and scale changes , 1992, Pattern Recognit..

[7]  John Illingworth,et al.  ForeSight: fast object recognition using geometric hashing with edge-triple features , 1997, Proceedings of International Conference on Image Processing.

[8]  Horst Bischof,et al.  Robust Recognition Using Eigenimages , 2000, Comput. Vis. Image Underst..

[9]  Radu Horaud,et al.  Symbolic image matching by simulated annealing , 1990, BMVC.

[10]  Ramesh C. Jain,et al.  Three-dimensional object recognition , 1985, CSUR.

[11]  David L. Waltz,et al.  Generating Semantic Descriptions From Drawings of Scenes With Shadows , 1972 .

[12]  Dorin Comaniciu,et al.  Robust analysis of feature spaces: color image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Y. C. Hecker,et al.  On Geometric Hashing and the Generalized Hough Transform , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[14]  Kevin W. Bowyer,et al.  Function from visual analysis and physical interaction: a methodology for recognition of generic classes of objects , 1998, Image Vis. Comput..

[15]  Steven Gold,et al.  A Graduated Assignment Algorithm for Graph Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Josef Kittler,et al.  Region-Based Representation for Object Recognition by Relaxation Labelling , 2000, SSPR/SPR.

[17]  Marcello Pelillo,et al.  Replicator Equations, Maximal Cliques, and Graph Isomorphism , 1998, Neural Computation.

[18]  Yehezkel Lamdan,et al.  Object recognition by affine invariant matching , 2011, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Haim J. Wolfson,et al.  Model-Based Object Recognition by Geometric Hashing , 1990, ECCV.

[20]  Tapas Kanungo,et al.  Object recognition using appearance-based parts and relations , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  W. Eric L. Grimson,et al.  On the Sensitivity of the Hough Transform for Object Recognition , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  King-Sun Fu,et al.  An Image Understanding System Using Attributed Symbolic Representation and Inexact Graph-Matching , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Michael Brady,et al.  Feature-based correspondence: an eigenvector approach , 1992, Image Vis. Comput..

[25]  L. J. Chipman,et al.  A fuzzy relaxation algorithm for matching imperfectly segmented images to models , 1992, Proceedings IEEE Southeastcon '92.

[26]  Luc Van Gool,et al.  Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions , 2000, BMVC.

[27]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[28]  Sameer A. Nene,et al.  A simple algorithm for nearest neighbor search in high dimensions , 1997 .

[29]  Horst Bunke,et al.  A graph distance metric based on the maximal common subgraph , 1998, Pattern Recognit. Lett..

[30]  Andrea Salgian,et al.  A cubist approach to object recognition , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[31]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[32]  Edwin R. Hancock,et al.  Structural Matching by Discrete Relaxation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  M. S. Costa,et al.  Scene analysis using appearance-based models and relational indexing , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[34]  Dmitry B. Goldgof,et al.  The Space Envelope: A Representation for 3D Scenes , 1998, Comput. Vis. Image Underst..

[35]  Ronen Basri,et al.  Recognition by Linear Combinations of Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Josef Kittler,et al.  Shape representation and recognition based on invariant unary and binary relations , 1999, Image Vis. Comput..

[37]  Bir Bhanu,et al.  Representation and Shape Matching of 3-D Objects , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Josef Kittler,et al.  Discrete relaxation , 1990, Pattern Recognit..

[39]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[40]  Andrew K. C. Wong,et al.  Entropy and Distance of Random Graphs with Application to Structural Pattern Recognition , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Shinji Umeyama,et al.  An Eigendecomposition Approach to Weighted Graph Matching Problems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Josef Kittler,et al.  Combining Evidence in Probabilistic Relaxation , 1989, Int. J. Pattern Recognit. Artif. Intell..

[43]  Edwin R. Hancock,et al.  Graph Matching With a Dual-Step EM Algorithm , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Tony Lindeberg,et al.  Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure , 1997, Image Vis. Comput..

[45]  Adam Baumberg,et al.  Reliable feature matching across widely separated views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).