High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation

Abstract In this paper, we investigate the connection between • closed Newton–Cotes formulae, • trigonometrically-fitted methods, • symplectic integrators and • efficient integration of the Schrodinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant literature and the references here). In this paper we study the closed Newton–Cotes formulae and we write them as symplectic multilayer structures. Based on the closed Newton–Cotes formulae, we also develop trigonometrically-fitted symplectic methods. An error analysis for the one-dimensional Schrodinger equation of the new developed methods and a comparison with previous developed methods is also given. We apply the new symplectic schemes to the well-known radial Schrodinger equation in order to investigate the efficiency of the proposed method to these type of problems.

[1]  A. C. Allison,et al.  Exponential-fitting methods for the numerical solution of the schrodinger equation , 1978 .

[2]  Zacharias A. Anastassi,et al.  A Family of Exponentially-fitted Runge–Kutta Methods with Exponential Order Up to Three for the Numerical Solution of the Schrödinger Equation , 2007 .

[3]  Francesca Mazzia,et al.  Hybrid Mesh Selection Algorithms Based on Conditioning for Two-Point Boundary Value Problems , 2006 .

[4]  Theodore E. Simos,et al.  A P-stable exponentially fitted method for the numerical integration of the Schrödinger equation , 2000, Appl. Math. Comput..

[5]  T. E. Simos,et al.  A two-step method for the numerical solution of the radial Schrödinger equation , 1995 .

[6]  Stuart A. Rice,et al.  New methods in computational quantum mechanics , 1996 .

[7]  Tom E. Simos,et al.  A Numerov-type method for the numerical solution of the radial Schro¨dinger equation , 1991 .

[8]  J. Cash,et al.  Variable Step Runge-Kutta-Nystrom Methods for the Numerical Solution of Reversible Systems , 2006 .

[9]  Tom E. Simos,et al.  A Modified Phase-Fitted Runge–Kutta Method for the Numerical Solution of the Schrödinger Equation , 2001 .

[10]  G. Avdelas,et al.  A Generator and an Optimized Generator of High-Order Hybrid Explicit Methods for the Numerical Solution of the Schrödinger Equation. Part 1. Development of the Basic Method , 2001 .

[11]  Theodore E. Simos,et al.  A Family of Numerov-type Exponentially Fitted Methods for the Numerical Integration of the Schrödinger Equation , 1997, Comput. Chem..

[12]  T. E. Simos,et al.  A Family of Trigonometrically-Fitted Symmetric Methods for the Efficient Solution of the Schrödinger Equation and Related Problems , 2003 .

[13]  T. E. Simos P-stable Four-Step Exponentially-Fitted Method for the Numerical Integration of the Schr¨odinger Equation , 2005 .

[14]  Theodore E. Simos,et al.  A Modified Runge-Kutta Method with Phase-lag of Order Infinity for the Numerical Solution of the Schrödinger Equation and Related Problems , 2001, Comput. Chem..

[15]  T. E. Simos,et al.  Family of Twelve Steps Exponential Fitting Symmetric Multistep Methods for the Numerical Solution of the Schrödinger Equation , 2002 .

[16]  G. Avdelas,et al.  Embedded eighth order methods for the numerical solution of the Schrödinger equation , 1999 .

[17]  T. E. Simos,et al.  Modified Runge-Kutta methods for the numerical solution of ODEs with oscillating solutions , 1997 .

[18]  T. E. Simos,et al.  A Family Of Numerov-Type Exponentially Fitted Predictor-Corrector Methods For The Numerical Integrat , 1996 .

[19]  Theodore E. Simos,et al.  On Finite Difference Methods for the Solution of the Schrödinger Equation , 1999, Comput. Chem..

[20]  Theodore E. Simos,et al.  Exponentially-fitted Runge-Kutta-Nystro"m method for the numerical solution of initial-value problems with oscillating solutions , 2002, Appl. Math. Lett..

[21]  Zacharoula Kalogiratou,et al.  Newton--Cotes formulae for long-time integration , 2003 .

[22]  Donato Trigiante,et al.  Discrete Conservative Vector Fields Induced by the Trapezoidal Method , 2006 .

[23]  T. Simos,et al.  On the Construction of Exponentially-Fitted Methods for the Numerical Solution of the Schrödinger Equation , 2001 .

[24]  K. Tselios,et al.  Symplectic Methods for the Numerical Solution of the Radial Shrödinger Equation , 2003 .

[25]  T. E. Simos AN EXPLICIT HIGH ORDER PREDICTOR-CORRECTOR METHOD FOR PERIODIC INITIAL VALUE PROBLEMS , 1995 .

[26]  T. Simos,et al.  Sixth algebraic order trigonometrically fitted predictor–corrector methods for the numerical solution of the radial Schrödinger equation , 2005 .

[27]  Theodore E. Simos,et al.  Explicit exponentially fitted methods for the numerical solution of the Schrödinger equation , 1999, Appl. Math. Comput..

[28]  T. E. Simos Some New Four-Step Exponential-Fitting Methods for the Numerical Solution of the Radical Schrödinger Equation , 1991 .

[30]  Liviu Gr Ixaru,et al.  Numerical methods for differential equations and applications , 1984 .

[31]  Ch. Tsitouras,et al.  High algebraic, high phase-lag order embedded Numerov-type methods for oscillatory problems , 2002, Appl. Math. Comput..

[32]  Tom E. Simos A New Numerov-Type Method For Computing Eigenvalues And Resonances Of The Radial Schrödinger Equation , 1996 .

[33]  T. E. Simos,et al.  Embedded methods for the numerical solution of the Schrödinger equation , 1996 .

[34]  T. E. Simos,et al.  A generator of high-order embedded P-stable methods for the numerical solution of the Schro¨dinger equation , 1996 .

[35]  Theodore E. Simos,et al.  Zero Dissipative, Explicit Numerov-Type Methods for Second Order IVPs with Oscillating Solutions , 2003, Numerical Algorithms.

[37]  T. E. Simos,et al.  Some new Numerov-type methods with minimal phase lag for the numerical integration of the radial Schrödinger equation , 1994 .

[38]  G. Herzberg,et al.  Spectra of diatomic molecules , 1950 .

[39]  Zacharoula Kalogiratou,et al.  Construction of Trigonometrically and Exponentially Fitted Runge–Kutta–Nyström Methods for the Numerical Solution of the Schrödinger Equation and Related Problems – a Method of 8th Algebraic Order , 2002 .

[40]  Xiao-yan Liu,et al.  Numerical solution of one‐dimensional time‐independent Schrödinger equation by using symplectic schemes , 2000 .

[41]  Novriana Sumarti,et al.  The Derivation of Interpolants for Nonlinear Two-Point Boundary Value Problems , 2006 .

[42]  Xinsheng Zhao,et al.  Numerical methods with a high order of accuracy applied in the quantum system , 1996 .

[43]  T. E. Simos Runge-Kutta interpolants with minimal phase-lag☆ , 1993 .

[44]  D. P. Sakas,et al.  A family of multiderivative methods for the numerical solution of the Schrödinger equation , 2005 .

[45]  T. Simos,et al.  The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor–Corrector methods , 2006 .

[46]  A. Hinchliffe,et al.  Chemical Modelling: Applications and Theory , 2008 .

[47]  T. E. Simos,et al.  A sixth-order exponentially fitted method for the numerical solution of the radial , 1990 .

[48]  T. E. Simos,et al.  New P-Stable Eighth Algebraic Order Exponentially-Fitted Methods for the Numerical Integration of the Schrödinger Equation , 2002 .

[49]  J. W. Cooley,et al.  An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields , 1961 .

[50]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[51]  Alessandra Sestini,et al.  BS Linear Multistep Methods on Non-uniform Meshes , 2006 .

[52]  Theodore E. Simos,et al.  Numerical solution of the two-dimensional time independent Schrödinger equation with Numerov-type methods , 2005 .

[53]  Zacharias A. Anastassi,et al.  Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation , 2005 .

[54]  T. Simos An Eighth Order Exponentially Fitted Method for the Numerical Solution of the Schrödinger Equation , 1998 .

[55]  T. E. Simos,et al.  A four-step exponentially fitted method for the numerical solution of the Schrödinger equation , 2006 .

[56]  David Moore,et al.  On High Order MIRK Schemes and Hermite-Birkhoff Interpolants , 2006 .

[57]  Theodore E. Simos,et al.  Bessel and Neumann-fitted Methods for the Numerical Solution of the Radial Schrödinger Equation , 1997, Comput. Chem..

[58]  T. E. Simos,et al.  A family of P-stable exponentially‐fitted methods for the numerical solution of the Schrödinger equation , 1999 .

[59]  T. E. Simos Predictor-corrector phase-fitted methods for Y{double_prime} = F(X,Y) and an application to the Schroedinger equation , 1995 .

[60]  M. M. Chawla,et al.  Numerov made explicit has better stability , 1984 .

[61]  T. E. Simos,et al.  A Family of P-stable Eighth Algebraic Order Methods with Exponential Fitting Facilities , 2001 .

[62]  T. E. Simos,et al.  Eighth order methods with minimal phase‐lag for accurate computations for the elastic scattering phase‐shift problem , 1997 .

[63]  A. Messiah Quantum Mechanics , 1961 .

[64]  Theodore E. Simos,et al.  Explicit high order methods for the numerical integration of periodic initial-value problems , 1998, Appl. Math. Comput..

[65]  G. Psihoyios A Block Implicit Advanced Step-point (BIAS) Algorithm for Stiff Differential Systems , 2006 .

[66]  T. E. Simos A high order predictor-corrector method for periodic IVPS , 1993 .

[67]  T. E. Simos,et al.  Symmetric Eighth Algebraic Order Methods with Minimal Phase-Lag for the Numerical Solution of the Schrödinger Equation , 2002 .

[68]  W. Enright On the use of ‘arc length’ and ‘defect’ for mesh selection for differential equations , 2005 .

[69]  T. Simos EIGHTH-ORDER METHOD FOR ACCURATE COMPUTATIONS FOR THE ELASTIC SCATTERING PHASE-SHIFT PROBLEM , 1998 .

[70]  John M. Blatt,et al.  Practical points concerning the solution of the Schrödinger equation , 1967 .

[71]  T. E. Simos,et al.  A new method for the numerical solution of fourth-order BVP's with oscillating solutions , 1996 .

[72]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[73]  A. D. Raptis,et al.  A four-step phase-fitted method for the numerical integration of second order initial-value problems , 1991 .

[74]  T. Simos High Algebraic Order Methods with Minimal Phase-Lag for Accurate Solution of the Schrödinger Equation , 1998 .

[75]  T. Simos Runge-Kutta-Nyström interpolants for the numerical integration of special second-order periodic initial-value problems☆ , 1993 .

[76]  T. E. Simos,et al.  Exponentially - Fitted Multiderivative Methods for the Numerical Solution of the Schrödinger Equation , 2004 .

[77]  M H Chawla,et al.  A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .

[78]  Shuen-De Wu,et al.  Open Newton–Cotes differential methods as multilayer symplectic integrators , 1997 .

[79]  Donato Trigiante,et al.  Stability and Conditioning in Numerical Analysis , 2006 .

[80]  CLOSED NEWTON–COTES TRIGONOMETRICALLY-FITTED FORMULAE FOR LONG-TIME INTEGRATION , 2003 .

[81]  G. Avdelas,et al.  Dissipative high phase-lag order numerov-type methods for the numerical solution of the Schrodinger equation , 2000 .

[82]  Theodore E. Simos High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems , 2008, Comput. Phys. Commun..

[83]  T. E. Simos,et al.  A new hybrid imbedded variable-step procedure for the numerical integration of the Schrödinger equation , 1998 .

[84]  Tom E. Simos A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation , 2001 .

[85]  J. Lambert,et al.  Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .

[86]  John P. Coleman,et al.  Numerical Methods for y″ =f(x, y) via Rational Approximations for the Cosine , 1989 .

[87]  Z. Kalogiratou,et al.  Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation , 2006 .

[88]  K. Tselios,et al.  Symplectic Methods of Fifth Order for the Numerical Solution of the Radial Shrödinger Equation , 2004 .

[89]  An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems☆ , 2003 .

[90]  M. Rizea,et al.  A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies , 1980 .

[91]  Tom E. Simos,et al.  A family of four-step exponential fitted methods for the numerical integration of the radial Schrödinger equation , 1994 .

[92]  An extended numerov-type method for the numerical solution of the Schrödinger equation , 1997 .

[93]  Tom E. Simos An explicit almost P-stable two-step method with phase-lag of order infinity for the numerical integration of second-order pacific initial-value problems , 1992 .

[94]  Yanyun Qu,et al.  A new implementation of EN method , 1999, Appl. Math. Comput..

[95]  Tom E. Simos A new variable-step method for the numerical integration of special second-order initial value problems and their application to the one-dimensional Schrödinger equation , 1993 .

[96]  Donato Trigiante,et al.  Stability Analysis of Linear Multistep Methods via Polynomial Type Variation 1 , 2007 .

[97]  Tom E. Simos Some new variable-step methods with minimal phase lag for the numerical integration of special second-order initial-value problem , 1994 .

[98]  J. Dormand,et al.  High order embedded Runge-Kutta formulae , 1981 .

[99]  A Family Of Hybrid Eighth Order Methods With Minimal Phase-Lag For The Numerical Solution Of The Schrödinger Equation And Related Problems , 2000 .

[100]  Lawrence F. Shampine,et al.  A User-Friendly Fortran BVP Solver , 2006 .

[101]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[102]  G. Avdelas,et al.  A Generator and an Optimized Generator of High-Order Hybrid Explicit Methods for the Numerical Solution of the Schrödinger Equation. Part 2. Development of the Generator, Optimization of the Generator and Numerical Results , 2001 .

[103]  Theodore E. Simos,et al.  A new finite difference scheme with minimal phase-lag for the numerical solution of the Schrödinger equation , 1999, Appl. Math. Comput..

[104]  I. Gladwell,et al.  Numerical Solution of General Bordered ABD Linear Systems by Cyclic Reduction , 2006 .

[105]  P. Henrici Discrete Variable Methods in Ordinary Differential Equations , 1962 .

[106]  Zacharoula Kalogiratou,et al.  Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation , 2003 .

[107]  Jeff Cash,et al.  Lobatto-Obrechkoff Formulae for 2nd Order Two-Point Boundary Value Problems , 2006 .

[108]  T. E. Simos,et al.  Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations , 1998 .

[109]  Tom E. Simos,et al.  A Runge-Kutta Fehlberg method with phase-lag of order infinity for initial-value problems with oscillating solution , 1993 .

[110]  T. Simos A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation , 2000 .