RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance

[1]  M. Wilkins,et al.  Publisher Correction: RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance , 2022, Nature Communications.

[2]  J. Vogel,et al.  An overview of gene regulation in bacteria by small RNAs derived from mRNA 3′ ends , 2022, FEMS microbiology reviews.

[3]  B. Felden,et al.  Distinct expression profiles of regulatory RNAs in the response to biocides in Staphylococcus aureus and Enterococcus faecium , 2021, Scientific reports.

[4]  B. Felden,et al.  RNA antitoxin SprF1 binds ribosomes to attenuate translation and promote persister cell formation in Staphylococcus aureus , 2021, Nature Microbiology.

[5]  G. Storz,et al.  Prevalence of small base-pairing RNAs derived from diverse genomic loci. , 2020, Biochimica et biophysica acta. Gene regulatory mechanisms.

[6]  C. Condon,et al.  An mRNA-mRNA Interaction Couples Expression of a Virulence Factor and Its Chaperone in Listeria monocytogenes , 2020, Cell reports.

[7]  J. Vogel An RNA biology perspective on species‐specific programmable RNA antibiotics , 2020, Molecular microbiology.

[8]  F. Vandenesch,et al.  RsaC sRNA modulates the oxidative stress response of Staphylococcus aureus during manganese starvation , 2019, Nucleic acids research.

[9]  H. Margalit,et al.  In vivo cleavage rules and target repertoire of RNase III in Escherichia coli , 2018, Nucleic Acids Research.

[10]  R. Sorek,et al.  High-resolution RNA 3′-ends mapping of bacterial Rho-dependent transcripts , 2018, Nucleic acids research.

[11]  C. Rumbo,et al.  A D-Alanine auxotrophic live vaccine is effective against lethal infection caused by Staphylococcus aureus , 2018, Virulence.

[12]  B. Palsson,et al.  Genome-scale analysis of Methicillin-resistant Staphylococcus aureus USA300 reveals a tradeoff between pathogenesis and drug resistance , 2018, Scientific Reports.

[13]  Takashi Yamamoto,et al.  Tailor-made gene silencing of Staphylococcus aureus clinical isolates by CRISPR interference , 2018, PloS one.

[14]  Konrad U. Förstner,et al.  ANNOgesic: a Swiss army knife for the RNA-seq based annotation of bacterial/archaeal genomes , 2018, GigaScience.

[15]  P. Linden,et al.  Incidence, prevalence, and management of MRSA bacteremia across patient populations—a review of recent developments in MRSA management and treatment , 2017, Critical Care.

[16]  Hanah Margalit,et al.  Integration of Bacterial Small RNAs in Regulatory Networks. , 2017, Annual review of biophysics.

[17]  Guido Sanguinetti,et al.  Kinetic CRAC uncovers a role for Nab3 in determining gene expression profiles during stress , 2017, Nature Communications.

[18]  F. Vandenesch,et al.  The RNA targetome of Staphylococcus aureus non-coding RNA RsaA: impact on cell surface properties and defense mechanisms , 2017, Nucleic acids research.

[19]  D. Tollervey,et al.  Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E , 2016, The EMBO journal.

[20]  Julien Prados,et al.  TSS-EMOTE, a refined protocol for a more complete and less biased global mapping of transcription start sites in bacterial pathogens , 2016, BMC Genomics.

[21]  R. Sorek,et al.  Widespread formation of alternative 3′ UTR isoforms via transcription termination in archaea , 2016, Nature Microbiology.

[22]  Pascale Cossart,et al.  Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria , 2016, Science.

[23]  B. Felden,et al.  SRD: a Staphylococcus regulatory RNA database , 2015, RNA.

[24]  J. Merritt,et al.  The Streptococcus mutans irvA gene encodes a trans-acting riboregulatory mRNA. , 2015, Molecular cell.

[25]  Shumei Liang,et al.  Inhibiting the growth of methicillin-resistant Staphylococcus aureus in vitro with antisense peptide nucleic acid conjugates targeting the ftsZ gene. , 2015, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[26]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[27]  David Tollervey,et al.  Edinburgh Research Explorer Identification of Bacteriophage-Encoded Anti-sRNAs in Pathogenic Escherichia coli , 2022 .

[28]  Jörg Vogel,et al.  Differential RNA-seq: the approach behind and the biological insight gained. , 2014, Current opinion in microbiology.

[29]  Javier López-Garrido,et al.  A eukaryotic-like 3′ untranslated region in Salmonella enterica hilD mRNA , 2014, Nucleic acids research.

[30]  Christopher M. Weber,et al.  Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. , 2014, Molecular cell.

[31]  B. Felden,et al.  A small RNA controls a protein regulator involved in antibiotic resistance in Staphylococcus aureus , 2014, Nucleic acids research.

[32]  D. Tollervey,et al.  Hyb: A bioinformatics pipeline for the analysis of CLASH (crosslinking, ligation and sequencing of hybrids) data , 2014, Methods.

[33]  Grzegorz Kudla,et al.  PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast , 2014, Genome Biology.

[34]  P. Romby,et al.  Base Pairing Interaction between 5′- and 3′-UTRs Controls icaR mRNA Translation in Staphylococcus aureus , 2013, PLoS genetics.

[35]  Haipeng Sun,et al.  ArtR, a novel sRNA of Staphylococcus aureus, regulates α-toxin expression by targeting the 5′ UTR of sarT mRNA , 2013, Medical Microbiology and Immunology.

[36]  Kay Nieselt,et al.  High-Resolution Transcriptome Maps Reveal Strain-Specific Regulatory Features of Multiple Campylobacter jejuni Isolates , 2013, PLoS genetics.

[37]  R. Sorek,et al.  The excludon: a new concept in bacterial antisense RNA-mediated gene regulation , 2012, Nature Reviews Microbiology.

[38]  E. Westhof,et al.  Loop-loop interactions involved in antisense regulation are processed by the endoribonuclease III in Staphylococcus aureus , 2012, RNA biology.

[39]  J. Vogel,et al.  An atlas of Hfq‐bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs , 2012, The EMBO journal.

[40]  J. Vogel,et al.  Global Regulatory Functions of the Staphylococcus aureus Endoribonuclease III in Gene Expression , 2012, PLoS genetics.

[41]  T. Gingeras,et al.  Genome-wide antisense transcription drives mRNA processing in bacteria , 2011, Proceedings of the National Academy of Sciences.

[42]  Sitao Wu,et al.  WebMGA: a customizable web server for fast metagenomic sequence analysis , 2011, BMC Genomics.

[43]  V. Singh,et al.  Physiological significance of the peptidoglycan hydrolase, LytM, in Staphylococcus aureus. , 2010, FEMS microbiology letters.

[44]  B. Felden,et al.  A Staphylococcus aureus Small RNA Is Required for Bacterial Virulence and Regulates the Expression of an Immune-Evasion Molecule , 2010, PLoS pathogens.

[45]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[46]  Kristin Reiche,et al.  The primary transcriptome of the major human pathogen Helicobacter pylori , 2010, Nature.

[47]  F. Vandenesch,et al.  Staphylococcus aureus RNAIII Binds to Two Distant Regions of coa mRNA to Arrest Translation and Promote mRNA Degradation , 2010, PLoS pathogens.

[48]  F. Vandenesch,et al.  Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. , 2007, Genes & development.

[49]  F. Vandenesch,et al.  Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression , 2005, The EMBO journal.

[50]  D. Bechhofer,et al.  Endoribonuclease RNase III is essential in Bacillus subtilis , 2000, Molecular microbiology.

[51]  H. Kalbacher,et al.  Inactivation of the dlt Operon inStaphylococcus aureus Confers Sensitivity to Defensins, Protegrins, and Other Antimicrobial Peptides* , 1999, The Journal of Biological Chemistry.

[52]  J Baranyi,et al.  A dynamic approach to predicting bacterial growth in food. , 1994, International journal of food microbiology.

[53]  D. Tollervey,et al.  Fungal small nuclear ribonucleoproteins share properties with plant and vertebrate U‐snRNPs. , 1987, The EMBO journal.

[54]  R. Young,et al.  Complementary sequences 1700 nucleotides apart form a ribonuclease III cleavage site in Escherichia coli ribosomal precursor RNA. , 1978, Proceedings of the National Academy of Sciences of the United States of America.