Min-Max theory and the Willmore conjecture
暂无分享,去创建一个
[1] E. Kuwert,et al. The large genus limit of the infimum of the Willmore energy , 2010 .
[2] T. Rivière. Analysis aspects of Willmore surfaces , 2008 .
[3] Reiner Schätzle,et al. Removability of point singularities of Willmore surfaces , 2004 .
[4] Camillo De Lellis,et al. The min--max construction of minimal surfaces , 2003, math/0303305.
[5] P. Topping. Towards the Willmore conjecture , 2000 .
[6] T. J. Willmore,et al. Surfaces in Conformal Geometry , 2000 .
[7] B. Ammann. The Willmore conjecture for immersed tori with small curvature integral , 1999, math/9906065.
[8] Xavier Michalet,et al. Vesicles of Toroidal Topology: Observed Morphology and Shape Transformations , 1995 .
[9] Bensimon,et al. Observation of toroidal vesicles. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[10] F. Urbano. Minimal surfaces with low index in the three-dimensional sphere , 1990 .
[11] Robert B. Kusner,et al. Comparison surfaces for the Willmore problem , 1989 .
[12] Robert B. Kusner,et al. Conformal geometry and complete minimal surfaces , 1987 .
[13] U. Pinkall,et al. ON TOTAL MEAN CURVATURES , 1986 .
[14] A. Ros,et al. Minimal immersions of surfaces by the first Eigenfunctions and conformal area , 1986 .
[15] Hyeong In Choi,et al. The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature , 1985 .
[16] U. Pinkall. Hopf tori inS3 , 1985 .
[17] Joel Langer,et al. Curves in the Hyperbolic Plane and mean Curvature of Tori in 3‐Space , 1984 .
[18] F. Smith. On the existence of embedded minimal 2-spheres in the 3-sphere, endowed with an arbitrary metric , 1983, Bulletin of the Australian Mathematical Society.
[19] Shing-Tung Yau,et al. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces , 1982 .
[20] T. Willmore. EXISTENCE AND REGULARITY OF MINIMAL SURFACES ON RIEMANNIAN MANIFOLDS , 1982 .
[21] R. Schoen,et al. Regularity of stable minimal hypersurfaces , 1981 .
[22] F. Almgren,et al. The structure of stationary one dimensional varifolds with positive density , 1976 .
[23] W. Helfrich. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.
[24] T. J. Willmore,et al. Mean Curvature of Riemannian Immersions , 1971 .
[25] H. Lawson,et al. Complete Minimal Surfaces in S 3 , 1970 .
[26] F. Almgren. Some Interior Regularity Theorems for Minimal Surfaces and an Extension of Bernstein's Theorem , 1966 .
[27] F. Almgren,et al. The homotopy groups of the integral cycle groups , 1962 .
[28] Shiing-Shen Chern,et al. On the Total Curvature of Immersed Manifolds , 1957 .
[29] K. Brauner. Vorlesungen über Differentialgeometrie III , 1930 .
[30] G. Thomsen. Grundlagen der konformen flächentheorie , 1924 .
[31] Rafael Montezuma,et al. MIN-MAX THEORY AND THE WILLMORE CONJECTURE , 2013 .
[32] Sophie Germain,et al. Recherches sur la théorie des surfaces élastiques , 2013 .
[33] E. Kuwert,et al. Existence of minimizing Willmore surfaces of prescribed genus , 2003 .
[34] P. Topping. An approach to the Willmore conjecture , 2001 .
[35] A. Ros. The Isoperimetric and Willmore Problems , 2001 .
[36] J. Wolf,et al. Global differential geometry : the mathematical legacy of Alfred Gray : International Congress on Differential Geometry, September 18-23, 2000, Bilbao, Spain , 2001 .
[37] A. Ros. The Willmore Conjecture in the Real Projective Space , 1999 .
[38] L. Simon. Existence of surfaces minimizing the Willmore functional , 1993 .
[39] U. Pinkall,et al. Ein Beweis der Willmoreschen Vermutung für Kanaltori. , 1992 .
[40] L. Evans. Measure theory and fine properties of functions , 1992 .
[41] W. Massey. A basic course in algebraic topology , 1991 .
[42] R. Wells. The Mathematical Heritage of Hermann Weyl , 1988 .
[43] Leon Simon,et al. Lectures on Geometric Measure Theory , 1984 .
[44] R. Bryant. A duality theorem for Willmore surfaces , 1984 .
[45] 陳 邦彦. The total curvature of immersed manifolds , 1982 .
[46] Hermann Karcher,et al. A general comparison theorem with applications to volume estimates for submanifolds , 1978 .
[47] R. Langevin,et al. On curvature integrals and knots , 1976 .
[48] James H. White. A global invariant of conformal mappings in space , 1973 .
[49] K. Shiohama,et al. A characterization of a standard torus in $E^3$ , 1970 .