P-Partitions and a Multi-Parameter Klyachko Idempotent

Because they play a role in our understanding of the symmetric group algebra, Lie idempotents have received considerable attention. The Klyachko idempotent has attracted interest from combinatorialists, partly because its denition involves the major index of permutations. For the symmetric group Sn, we look at the symmetric group algebra with coecients from the eld of rational functions in n variables q1;:::;qn .I n this setting, we can dene an n-parameter generalization of the Klyachko idempotent, and we show it is a Lie idempotent in the appropriate sense. Somewhat surprisingly, our proof that it is a Lie element emerges from Stanley’s theory of P -partitions.

[1]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[2]  Christophe Hohlweg,et al.  A Solomon descent theory for the wreath products ≀_{} , 2005, math/0503011.

[3]  Christophe Reutenauer,et al.  On Dynkin and Klyachko Idempotents in Graded Bialgebras , 2002, Adv. Appl. Math..

[4]  Jason E. Fulman Applications of Symmetric Functions to Cycle and Increasing Subsequence Structure after Shuffles , 2001, math/0104003.

[5]  Jason E. Fulman Applications of the Brauer Complex: Card Shuffling, Permutation Statistics, and Dynamical Systems , 2001, math/0102105.

[6]  C. Tracy,et al.  On the distributions of the lengths of the longest monotone subsequences in random words , 1999, math/9904042.

[7]  Florent Hivert,et al.  Hecke Algebras, Difference Operators, and Quasi-Symmetric Functions , 2000 .

[8]  P. Deift Integrable systems and combinatorial theory , 2000 .

[9]  Jason E. Fulman Affine Shuffles, Shuffles with Cuts, the Whitehouse Module, and Patience Sorting , 1999, math/9910087.

[10]  G. Kuperberg Random words, quantum statistics, central limits, Random matrices , 1999, math/9909104.

[11]  P. Diaconis,et al.  Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem , 1999 .

[12]  K. Johansson Discrete orthogonal polynomial ensembles and the Plancherel measure. , 1999, math/9906120.

[13]  G. Olshanski,et al.  Z-Measures on Partitions, Robinson-Schensted-Knuth Correspondence, and beta=2 Random Matrix Ensembles , 1999, math/9905189.

[14]  Jason E. Fulman Semisimple Orbits of Lie Algebras and Card-Shuffling Measures on Coxeter Groups , 1997, math/9712243.

[15]  Daniel Krob,et al.  Noncommutative Symmetric Functions II: Transformations of Alphabets , 1997, Int. J. Algebra Comput..

[16]  A. Odlyzko Asymptotic enumeration methods , 1996 .

[17]  C. Reutenauer,et al.  Duality between Quasi-Symmetrical Functions and the Solomon Descent Algebra , 1995 .

[18]  Israel M. Gelfand,et al.  Noncommutative Symmetrical Functions , 1995 .

[19]  A. Lascoux,et al.  Crystal graphs andq-analogues of weight multiplicities for the root systemAn , 1995, q-alg/9503001.

[20]  Alain,et al.  CRYSTAL GRAPHS AND q-ANALOGUES OF WEIGHT MULTIPLICITIES FOR THE ROOT SYSTEM A n ∗ , 1995 .

[21]  I. Gelfand,et al.  Noncommutative symmetric functions , 1994, hep-th/9407124.

[22]  Gérard Henry Edmond Duchamp,et al.  Déformations de projecteurs de Lie , 1994 .

[23]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9210074.

[24]  P. Diaconis,et al.  Trailing the Dovetail Shuffle to its Lair , 1992 .

[25]  Adriano M. Garsia,et al.  Combinatorics of the Free Lie Algebra and the Symmetric Group , 1990 .

[26]  Adriano M. Garsia,et al.  A decomposition of Solomon's descent algebra , 1989 .

[27]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[28]  C. Curtis,et al.  Methods of representation theory--with applications to finite groups and orders , 1981 .

[29]  Irving Reiner,et al.  Methods of Representation Theory , 1981 .

[30]  Adriano M. Garsia,et al.  Combinatorial methods in the theory of Cohen-Macaulay rings , 1980 .

[31]  A. Klyachko Lie elements in the tensor algebra , 1974 .

[32]  R. Stanley Ordered Structures And Partitions , 1972 .

[33]  D. Foata,et al.  Theorie Geometrique des Polynomes Euleriens , 1970 .

[34]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[35]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .