Sprite: Generalizing Topic Models with Structured Priors

We introduce Sprite, a family of topic models that incorporates structure into model priors as a function of underlying components. The structured priors can be constrained to model topic hierarchies, factorizations, correlations, and supervision, allowing Sprite to be tailored to particular settings. We demonstrate this flexibility by constructing a Sprite-based model to jointly infer topic hierarchies and author perspective, which we apply to corpora of political debates and online reviews. We show that the model learns intuitive topics, outperforming several other topic models at predictive tasks.

[1]  Ramesh Nallapati,et al.  Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora , 2009, EMNLP.

[2]  William W. Cohen,et al.  Regularization of Latent Variable Models to Obtain Sparsity , 2013, SDM.

[3]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[4]  Ruslan Salakhutdinov,et al.  Evaluation methods for topic models , 2009, ICML '09.

[5]  Thomas L. Griffiths,et al.  Hierarchical Topic Models and the Nested Chinese Restaurant Process , 2003, NIPS.

[6]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[7]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Keith T. Poole,et al.  Measuring Bias and Uncertainty in Ideal Point Estimates via the Parametric Bootstrap , 2004, Political Analysis.

[9]  Noah A. Smith,et al.  Annealing Structural Bias in Multilingual Weighted Grammar Induction , 2006, ACL.

[10]  Xiaojin Zhu,et al.  Incorporating domain knowledge into topic modeling via Dirichlet Forest priors , 2009, ICML '09.

[11]  Andrew McCallum,et al.  Database of NIH grants using machine-learned categories and graphical clustering , 2011, Nature Methods.

[12]  Naonori Ueda,et al.  Deterministic annealing EM algorithm , 1998, Neural Networks.

[13]  Mark Dredze,et al.  Factorial LDA: Sparse Multi-Dimensional Text Models , 2012, NIPS.

[14]  Wei Li,et al.  Mixtures of hierarchical topics with Pachinko allocation , 2007, ICML '07.

[15]  Andrew McCallum,et al.  Rethinking LDA: Why Priors Matter , 2009, NIPS.

[16]  Manfred K. Warmuth,et al.  Exponentiated Gradient Versus Gradient Descent for Linear Predictors , 1997, Inf. Comput..

[17]  Andrew McCallum,et al.  Topic Models Conditioned on Arbitrary Features with Dirichlet-multinomial Regression , 2008, UAI.

[18]  Andrew McCallum,et al.  Optimizing Semantic Coherence in Topic Models , 2011, EMNLP.

[19]  Mark Dredze,et al.  Shared Components Topic Models , 2012, HLT-NAACL.

[20]  Mark Dredze,et al.  What Affects Patient (Dis)satisfaction? Analyzing Online Doctor Ratings with a Joint Topic-Sentiment Model , 2013, AAAI 2013.

[21]  Mark Dredze,et al.  Drug Extraction from the Web: Summarizing Drug Experiences with Multi-Dimensional Topic Models , 2013, NAACL.

[22]  David M. Blei,et al.  The Inverse Regression Topic Model , 2014, ICML.

[23]  Eric P. Xing,et al.  Sparse Additive Generative Models of Text , 2011, ICML.

[24]  Michael J. Paul,et al.  Summarizing Contrastive Viewpoints in Opinionated Text , 2010, EMNLP.

[25]  Viet-An Nguyen,et al.  Lexical and Hierarchical Topic Regression , 2013, NIPS.

[26]  Mark Dredze,et al.  A large-scale quantitative analysis of latent factors and sentiment in online doctor reviews , 2014, J. Am. Medical Informatics Assoc..

[27]  John D. Lafferty,et al.  A correlated topic model of Science , 2007, 0708.3601.

[28]  Michael J. Paul,et al.  A Two-Dimensional Topic-Aspect Model for Discovering Multi-Faceted Topics , 2010, AAAI.

[29]  Wei Li,et al.  Pachinko allocation: DAG-structured mixture models of topic correlations , 2006, ICML.

[30]  Chong Wang,et al.  Reading Tea Leaves: How Humans Interpret Topic Models , 2009, NIPS.

[31]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[32]  Quentin Pleple,et al.  Interactive Topic Modeling , 2013 .

[33]  Chong Wang,et al.  Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process , 2009, NIPS.