Information entropy and dark energy evolution

Here, the information entropy is investigated in the context of early and late cosmology under the hypothesis that distinct phases of universe evolution are entangled between them. The approach is based on the entangled state ansatz, representing a coarse-grained definition of primordial dark temperature associated to an effective entangled energy density. The dark temperature definition comes from assuming either Von Neumann or linear entropy as sources of cosmological thermodynamics. We interpret the involved information entropies by means of probabilities of forming structures during cosmic evolution. Following this recipe, we propose that quantum entropy is simply associated to the thermodynamical entropy and we investigate the consequences of our approach using the adiabatic sound speed. As byproducts, we analyze two phases of universe evolution: the late and early stages. To do so, we first recover that dark energy reduces to a pure cosmological constant, as zero-order entanglement contribution, and...

[1]  Physics from information , 2010, 1011.1657.

[2]  Salvatore Capozziello,et al.  Entangled States in Quantum Cosmology and the Interpretation of Λ , 2010, Entropy.

[3]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[4]  Andrei Linde Inflationary Cosmology after Planck 2013 , 2014, 1402.0526.

[5]  Bryce S. DeWitt,et al.  The Many-worlds interpretation of quantum mechanics , 2015 .

[6]  J. Mimoso,et al.  Entropy evolution of universes with initial and final de Sitter eras , 2013, 1302.1972.

[7]  C. Tsallis Entropy , 2022, Thermodynamic Weirdness.

[8]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[9]  S. Capozziello,et al.  A Bird's Eye View of f (R)-Gravity , 2009, 0909.4672.

[10]  Anthony Papagiannis Intern , 2010, BMJ : British Medical Journal.

[11]  C. Burgess The Cosmological Constant Problem: Why it's hard to get Dark Energy from Micro-physics , 2013, 1309.4133.

[12]  S. Mancini,et al.  The Role of Spin in Entanglement Generated by Expanding Spacetime , 2015, 1507.06811.

[13]  A. Starobinsky,et al.  Cosmological constant from decoherence , 2010, 1010.5331.

[14]  S. Capozziello,et al.  Cosmological dark energy effects from entanglement , 2013, 1302.5884.

[15]  F. Mena,et al.  Relative information entropy in cosmology: The problem of information entanglement , 2016, 1604.06947.

[16]  Shinji Tsujikawa,et al.  Dynamics of dark energy , 2006 .

[17]  Orlando Luongo,et al.  On the theory and applications of modern cosmography , 2015, 1511.06532.

[18]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[19]  S. Capozziello,et al.  Dark Energy from Entanglement Entropy , 2013, 1303.1311.

[20]  P. Peebles,et al.  The Cosmological Constant and Dark Energy , 2002, astro-ph/0207347.

[21]  S. Capozziello,et al.  Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests , 2012, 1205.3421.

[22]  S. Capozziello,et al.  Cosmographic Constraints and Cosmic Fluids , 2013, 1312.1825.

[23]  Claus Kiefer Quantum gravity: general introduction and recent developments , 2006 .

[24]  Daniel R. Terno,et al.  Quantum Information and Relativity Theory , 2002, quant-ph/0212023.

[25]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  G. W. Pratt,et al.  Planck 2013 results. XXII. Constraints on inflation , 2013, 1303.5082.

[28]  H. Quevedo,et al.  Cosmographic study of the universe’s specific heat: a landscape for cosmology? , 2012, 1211.0626.

[29]  T. Damour,et al.  The twelfth Marcel Grossmann Meeting : on recent developments in theoretical and experimental general relativity, astrophysics and relativistic field theories : proceedings of the MG12 meeting on general relativity, UNESCO Headquarters, Paris, France 12-18 July 2009 , 2012 .

[30]  H. Quevedo,et al.  Thermodynamic systems as extremal hypersurfaces , 2010, 1101.3359.