Multivalued type dissimilarity measure and concept of mutual dissimilarity value for clustering symbolic patterns

A successful attempt in exploring a dissimilarity measure which captures the reality is made in this paper. The proposed measure unlike other measures (Pattern Recognition 24(6) (1991) 567; Pattern Recognition Lett. 16 (1995) 647; Pattern Recognition 28(8) (1995) 1277; IEEE Trans. Syst. Man Cybern. 24(4) (1994)) is multivalued and non-symmetric. The concept of mutual dissimilarity value is introduced to make the existing conventional clustering algorithms work on the proposed unconventional dissimilarity measure.