Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources

Despite broad interest in aluminum gallium nitride (AlGaN) optoelectronic devices for deep ultraviolet (DUV) applications, the performance of conventional Al(Ga)N planar devices drastically decays when approaching the AlN end, including low internal quantum efficiencies (IQEs) and high device operation voltages. Here we show that these challenges can be addressed by utilizing nitrogen (N) polar Al(Ga)N nanowires grown directly on Si substrate. By carefully tuning the synthesis conditions, a record IQE of 80% can be realized with N-polar AlN nanowires, which is nearly ten times higher compared to high quality planar AlN. The first 210 nm emitting AlN nanowire light emitting diodes (LEDs) were achieved, with a turn on voltage of about 6 V, which is significantly lower than the commonly observed 20 – 40 V. This can be ascribed to both efficient Mg doping by controlling the nanowire growth rate and N-polarity induced internal electrical field that favors hole injection. In the end, high performance N-polar AlGaN nanowire LEDs with emission wavelengths covering the UV-B/C bands were also demonstrated.

[1]  Hideki Hirayama,et al.  222-282 nm AlGaN and InAlGaN based deep-UV LEDs fabricated on high-quality AlN template , 2009, OPTO.

[2]  Norihiko Kamata,et al.  Growth of flat p‐GaN contact layer by pulse flow method for high light‐extraction AlGaN deep‐UV LEDs with Al‐based electrode , 2012 .

[3]  Jinlin Huang,et al.  Diameter-dependent dopant location in silicon and germanium nanowires , 2009, Proceedings of the National Academy of Sciences.

[4]  K. Kishino,et al.  GaN/AlGaN nanocolumn ultraviolet light-emitting diodes grown on n-(111) Si by RF-plasma-assisted molecular beam epitaxy , 2008 .

[5]  Hirofumi Kan,et al.  Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode , 2008 .

[6]  R. Klie,et al.  Mixed polarity in polarization-induced p-n junction nanowire light-emitting diodes. , 2013, Nano letters.

[7]  Makoto Kasu,et al.  Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices , 2011 .

[8]  Neeraj Nepal,et al.  Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys , 2009 .

[9]  Z. Mi,et al.  Optical properties of strain-free AlN nanowires grown by molecular beam epitaxy on Si substrates , 2014 .

[10]  A. Uedono,et al.  Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors , 2006, Nature materials.

[11]  Eric Feltin,et al.  Room temperature polariton lasing in a GaN∕AlGaN multiple quantum well microcavity , 2008 .

[12]  Z. Mi,et al.  Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting , 2014, Nature Communications.

[13]  E. Monroy,et al.  AlGaN/AlN quantum dots for UV light emitters , 2013 .

[14]  K. B. Nam,et al.  Unique optical properties of AlGaN alloys and related ultraviolet emitters , 2004 .

[15]  Jing Li,et al.  Mg acceptor level in AlN probed by deep ultraviolet photoluminescence , 2003 .

[16]  Peter W Voorhees,et al.  Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire. , 2009, Nature nanotechnology.

[17]  M. Weyers,et al.  Advances in group III-nitride-based deep UV light-emitting diode technology , 2010 .

[18]  Theeradetch Detchprohm,et al.  Sub-250 nm low-threshold deep-ultraviolet AlGaN-based heterostructure laser employing HfO2/SiO2 dielectric mirrors , 2013 .

[19]  Hideo Kawanishi,et al.  Room-temperature deep-ultraviolet lasing at 241.5 nm of AlGaN multiple-quantum-well laser , 2004 .

[20]  M. Kneissl,et al.  Performance Characteristics of UV-C AlGaN-Based Lasers Grown on Sapphire and Bulk AlN Substrates , 2014, IEEE Photonics Technology Letters.

[21]  S. Denbaars,et al.  Influence of polarity on carrier transport in semipolar (2021¯) and (202¯1) multiple-quantum-well light-emitting diodes , 2012 .

[22]  M. G. Kibria,et al.  p-Type InN nanowires. , 2013, Nano letters.

[23]  S. Denbaars,et al.  Semipolar (202̄1) Single-Quantum-Well Red Light-Emitting Diodes with a Low Forward Voltage , 2013 .

[24]  T. Moustakas,et al.  Recent progress of efficient deep UV‐LEDs by plasma‐assisted molecular beam epitaxy , 2012 .

[25]  Asif Khan,et al.  Ultraviolet light-emitting diodes based on group three nitrides , 2008 .

[26]  O. Brandt,et al.  Spontaneous nucleation and growth of GaN nanowires: the fundamental role of crystal polarity. , 2012, Nano letters.

[27]  Y. Taniyasu,et al.  Increased electron mobility in n-type Si-doped AlN by reducing dislocation density , 2006 .

[28]  Y. Taniyasu,et al.  An aluminium nitride light-emitting diode with a wavelength of 210 nanometres , 2006, Nature.

[29]  Michael S. Shur,et al.  AlGaN-based 280nm light-emitting diodes with continuous-wave power exceeding 1mW at 25mA , 2004 .

[30]  A. Davydov,et al.  GaN Nanowires Grown by Molecular Beam Epitaxy , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[31]  Z. Mi,et al.  Growth of large-scale vertically aligned GaN nanowires and their heterostructures with high uniformity on SiO(x) by catalyst-free molecular beam epitaxy. , 2013, Nanoscale.

[32]  Guanghou Wang,et al.  Formation and photoluminescence properties of AlN nanowires , 2003 .

[33]  A. A. Allerman,et al.  Growth and design of deep-UV (240–290 nm) light emitting diodes using AlGaN alloys , 2004 .

[34]  H. Renevier,et al.  Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111) , 2011 .

[35]  Anirban Bhattacharyya,et al.  Deep ultraviolet emitting AlGaN quantum wells with high internal quantum efficiency , 2009 .

[36]  M. Shur,et al.  Deep-Ultraviolet Light-Emitting Diodes , 2010, IEEE Transactions on Electron Devices.

[37]  Manijeh Razeghi,et al.  Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si(111) , 2013 .

[38]  Yu-Lun Chueh,et al.  Aligned AlN Nanorods with Multi‐tipped Surfaces—Growth, Field‐Emission, and Cathodoluminescence Properties , 2006 .

[39]  Y. Taniyasu,et al.  Electrical conduction properties of n-type Si-doped AlN with high electron mobility (>100cm2V−1s−1) , 2004 .

[40]  Hong Guo,et al.  Tuning the surface charge properties of epitaxial InN nanowires. , 2012, Nano letters.

[41]  Debdeep Jena,et al.  Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures , 2010, Science.

[42]  H. Hirayama,et al.  340 nm‐band high‐power InAlGaN quantum well ultraviolet light‐emitting diode using p‐type InAlGaN layers , 2008 .

[43]  Makoto Kasu,et al.  Surface 210 nm light emission from an AlN p–n junction light-emitting diode enhanced by A-plane growth orientation , 2010 .

[44]  Motoaki Iwaya,et al.  High‐performance UV emitter grown on high‐crystalline‐quality AlGaN underlying layer , 2009 .