Materials-by-design: computation, synthesis, and characterization from atoms to structures

In the 50 years that succeeded Richard Feynman's exposition of the idea that there is "plenty of room at the bottom" for manipulating individual atoms for the synthesis and manufacturing processing of materials, the materials-by-design paradigm is being developed gradually through synergistic integration of experimental material synthesis and characterization with predictive computational modeling and optimization. This paper reviews how this paradigm creates the possibility to develop materials according to specific, rational designs from the molecular to the macroscopic scale. We discuss promising techniques in experimental small-scale material synthesis and large-scale fabrication methods to manipulate atomistic or macroscale structures, which can be designed by computational modeling. These include recombinant protein technology to produce peptides and proteins with tailored sequences encoded by recombinant DNA, self-assembly processes induced by conformational transition of proteins, additive manufacturing for designing complex structures, and qualitative and quantitative characterization of materials at different length scales. We describe important material characterization techniques using numerous methods of spectroscopy and microscopy. We detail numerous multi-scale computational modeling techniques that complements these experimental techniques: DFT at the atomistic scale; fully atomistic and coarse-grain molecular dynamics at the molecular to mesoscale; continuum modeling at the macroscale. Additionally, we present case studies that utilize experimental and computational approaches in an integrated manner to broaden our understanding of the properties of two-dimensional materials and materials based on silk and silk-elastin-like proteins.

[1]  Pinshane Y. Huang,et al.  Graphene and boron nitride lateral heterostructures for atomically thin circuitry , 2012, Nature.

[2]  Markus J Buehler,et al.  Nanomechanics of functional and pathological amyloid materials. , 2011, Nature nanotechnology.

[3]  M. Buehler,et al.  Defect-Tolerant Bioinspired Hierarchical Composites: Simulation and Experiment. , 2015, ACS biomaterials science & engineering.

[4]  Niels Olhoff,et al.  Topology optimization of continuum structures: A review* , 2001 .

[5]  H. Hansma,et al.  Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Peter Fratzl,et al.  Biomimetic materials research: what can we really learn from nature's structural materials? , 2007, Journal of The Royal Society Interface.

[7]  Hyoyoung Lee,et al.  One-pot reduction of graphene oxide at subzero temperatures. , 2011, Chemical communications.

[8]  Mohsen Badrossamay,et al.  Topology Optimization for Fused Deposition Modeling Process , 2013 .

[9]  Markus J. Buehler,et al.  Nacre-inspired design of graphene oxide–polydopamine nanocomposites for enhanced mechanical properties and multi-functionalities , 2017, Nano Futures.

[10]  Jin Suk Chung,et al.  Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor , 2013 .

[11]  Grace X. Gu,et al.  Printing nature: Unraveling the role of nacre's mineral bridges. , 2017, Journal of the mechanical behavior of biomedical materials.

[12]  N. Marzari,et al.  Uniaxial Strain in Graphene by Raman Spectroscopy: G peak splitting, Gruneisen Parameters and Sample Orientation , 2008, 0812.1538.

[13]  David L. Kaplan,et al.  Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres , 2015, Nature Communications.

[14]  Pim W. J. M. Frederix,et al.  Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex , 2017, Nature Communications.

[15]  A. Lyubartsev,et al.  Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[17]  S. D. Daxini,et al.  A Review on Recent Contribution of Meshfree Methods to Structure and Fracture Mechanics Applications , 2014, TheScientificWorldJournal.

[18]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[19]  Markus J. Buehler,et al.  De novo composite design based on machine learning algorithm , 2018 .

[20]  Ke-wei Xu,et al.  Size-dependent deformation behavior of nanocrystalline graphene sheets , 2015 .

[21]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[22]  Giovanni Dietler,et al.  Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. , 2010, Nature nanotechnology.

[23]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[24]  Boris I. Yakobson,et al.  Vapor Phase Growth and Grain Boundary Structure of Molybdenum Disulfide Atomic Layers , 2013 .

[25]  David W. Rosen,et al.  Development of Additive Manufacturing Technology , 2010 .

[26]  Helgi I. Ingólfsson,et al.  Martini Coarse-Grained Force Field: Extension to RNA. , 2015, Biophysical journal.

[27]  David L. Kaplan,et al.  High‐Strength, Durable All‐Silk Fibroin Hydrogels with Versatile Processability toward Multifunctional Applications , 2018, Advanced functional materials.

[28]  Z. Shao,et al.  Thixotropic silk nanofibril-based hydrogel with extracellular matrix-like structure. , 2014, Biomaterials science.

[29]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[30]  Klaus Schulten,et al.  Steered Molecular Dynamics , 1999, Computational Molecular Dynamics.

[31]  Lauren L. Beghini,et al.  Additive manufacturing: Toward holistic design , 2017 .

[32]  T. Ng,et al.  Nanoscale Fluid Mechanics Working Principles of Transverse Flow Carbon Nanotube Membrane for Enhanced Desalination , 2017 .

[33]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[34]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[35]  D. Kaplan,et al.  Regenerated silk materials for functionalized silk orthopedic devices by mimicking natural processing. , 2016, Biomaterials.

[36]  Daniel Wolverson,et al.  Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2 , 2013 .

[37]  H. Dai,et al.  Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.

[38]  André R. Studart,et al.  Biological and Bioinspired Composites with Spatially Tunable Heterogeneous Architectures , 2013 .

[39]  Gui-Rong Liu,et al.  The Finite Element Method , 2007 .

[40]  Markus J Buehler,et al.  Liquid Exfoliated Natural Silk Nanofibrils: Applications in Optical and Electrical Devices , 2016, Advanced materials.

[41]  Wang Yao,et al.  Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. , 2014, Nature materials.

[42]  Teng Yong Ng,et al.  DISSIPATIVE PARTICLE DYNAMICS IN SOFT MATTER AND POLYMERIC APPLICATIONS — A REVIEW , 2010 .

[43]  A. Kolinski,et al.  Coarse-Grained Protein Models and Their Applications. , 2016, Chemical reviews.

[44]  James B. Adams,et al.  Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.

[45]  M. Zangeneh,et al.  DISSIPATIVE PARTICLE DYNAMICS: INTRODUCTION, METHODOLOGY AND COMPLEX FLUID APPLICATIONS - A REVIEW , 2009 .

[46]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[47]  S. Louie,et al.  Electronic transport in polycrystalline graphene. , 2010, Nature materials.

[48]  P. Wallace The Band Theory of Graphite , 1947 .

[49]  Vincent Meunier,et al.  First-principles Raman spectra of MoS2, WS2 and their heterostructures. , 2014, Nanoscale.

[50]  Yimin A. Wu,et al.  Spatial control of defect creation in graphene at the nanoscale , 2012, Nature Communications.

[51]  David W. Rosen,et al.  A comparison of synthesis methods for cellular structures with application to additive manufacturing , 2010 .

[52]  L. Fothergill-Gilmore Recombinant Protein Technology , 1993 .

[53]  Q. Luo,et al.  Protein self-assembly via supramolecular strategies. , 2016, Chemical Society reviews.

[54]  Xiaoyi Wu,et al.  Wet-spinning of recombinant silk-elastin-like protein polymer fibers with high tensile strength and high deformability. , 2009, Biomacromolecules.

[55]  D. Kaplan,et al.  Ultrathin Free-Standing Bombyx mori Silk Nanofibril Membranes. , 2016, Nano letters.

[56]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[57]  Markus J Buehler,et al.  Multiscale Modeling of Muscular-Skeletal Systems. , 2017, Annual review of biomedical engineering.

[58]  M. Weiss,et al.  Exploring membrane and protein dynamics with dissipative particle dynamics. , 2011, Advances in protein chemistry and structural biology.

[59]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[60]  Matthew M. Jacobsen,et al.  Effect of Terminal Modification on the Molecular Assembly and Mechanical Properties of Protein-Based Block Copolymers. , 2017, Macromolecular bioscience.

[61]  E. Gerstner Nobel Prize 2010: Andre Geim & Konstantin Novoselov , 2010 .

[62]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[63]  O. Yazyev,et al.  Polycrystalline graphene and other two-dimensional materials. , 2014, Nature nanotechnology.

[64]  Yong Huang,et al.  Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations , 2015 .

[65]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[66]  Wenwen Huang,et al.  Computational smart polymer design based on elastin protein mutability. , 2017, Biomaterials.

[67]  D. Kaplan,et al.  Tunable self-assembly of genetically engineered silk--elastin-like protein polymers. , 2011, Biomacromolecules.

[68]  M. Dresselhaus,et al.  Intercalation compounds of graphite , 1981 .

[69]  Alexander Lukyanov,et al.  Versatile Object-Oriented Toolkit for Coarse-Graining Applications. , 2009, Journal of chemical theory and computation.

[70]  Prabhat Hajela,et al.  Genetic Algorithms in Structural Topology Optimization , 1993 .

[71]  Yo-Ming Hsieh,et al.  ESFM: An Essential Software Framework for Meshfree Methods , 2014, Adv. Eng. Softw..

[72]  David A. Muller,et al.  Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures , 2017, Nature.

[73]  James Annett,et al.  Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate , 2016, Nature.

[74]  Siewert J Marrink,et al.  Martini Coarse-Grained Force Field: Extension to Carbohydrates. , 2009, Journal of chemical theory and computation.

[75]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[76]  Christopher Dyken,et al.  State-of-the-art in heterogeneous computing , 2010, Sci. Program..

[77]  David L Kaplan,et al.  Recombinant DNA production of spider silk proteins , 2013, Microbial biotechnology.

[78]  George I. N. Rozvany,et al.  A critical review of established methods of structural topology optimization , 2009 .

[79]  Jinrong Yao,et al.  Soy protein-directed one-pot synthesis of gold nanomaterials and their functional conductive devices. , 2016, Journal of materials chemistry. B.

[80]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[81]  Wenwen Huang,et al.  Design and function of biomimetic multilayer water purification membranes , 2017, Science Advances.

[82]  M. Buehler,et al.  Unusually low and density-insensitive thermal conductivity of three-dimensional gyroid graphene. , 2017, Nanoscale.

[83]  David W. Rosen,et al.  Computer-Aided Design for Additive Manufacturing of Cellular Structures , 2007 .

[84]  Alberto Redaelli,et al.  Coarse-Grained Model of Collagen Molecules Using an Extended MARTINI Force Field , 2010 .

[85]  Nicola Pugno,et al.  Multifunctionality and Control of the Crumpling and Unfolding of Large-Area Graphene , 2012, Nature materials.

[86]  N. Aluru,et al.  Relative Entropy and Optimization-Driven Coarse-Graining Methods in VOTCA , 2015, PloS one.

[87]  Benedict Leimkuhler,et al.  Computational Molecular Dynamics: Challenges, Methods, Ideas , 1999, Computational Molecular Dynamics.

[88]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[89]  Matthias Rief,et al.  Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy , 1997, Science.

[90]  G. Sotzing,et al.  Electrospinning nanoribbons of a bioengineered silk-elastin-like protein (SELP) from water , 2009 .

[91]  David W. Rosen,et al.  Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing , 2009 .

[92]  M. Buehler,et al.  The mechanics and design of a lightweight three-dimensional graphene assembly , 2017, Science Advances.

[93]  D. Robinson,et al.  Using Lessons from Cellular and Molecular Structures for Future Materials , 2007 .

[94]  T. Ng,et al.  A molecular dynamics study of the thermal conductivity of nanoporous silica aerogel, obtained through negative pressure rupturing , 2012 .

[95]  I. Pivkin,et al.  A polarizable coarse-grained protein model for dissipative particle dynamics. , 2015, Physical chemistry chemical physics : PCCP.

[96]  P. Debye,et al.  Zerstreuung von Röntgenstrahlen , 1915 .

[97]  M. Buehler,et al.  Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D printing, and Testing , 2013 .

[98]  David L. Kaplan,et al.  Genetically Programmable Thermoresponsive Plasmonic Gold/Silk-Elastin Protein Core/Shell Nanoparticles , 2014, Langmuir : the ACS journal of surfaces and colloids.

[99]  J. Appenzeller,et al.  Strain Engineering for Transition Metal Dichalcogenides Based Field Effect Transistors. , 2016, ACS nano.

[100]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[101]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[102]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[103]  Grace X. Gu,et al.  Algorithm-driven design of fracture resistant composite materials realized through additive manufacturing , 2017 .

[104]  Feng Zhang,et al.  3D Printing of Graphene Aerogels. , 2016, Small.

[105]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[106]  D. Tieleman,et al.  Perspective on the Martini model. , 2013, Chemical Society reviews.

[107]  W. Schommers,et al.  Pair potentials in disordered many-particle systems: A study for liquid gallium , 1983 .

[108]  David L. Kaplan,et al.  Modeling and Experiment Reveal Structure and Nanomechanics across the Inverse Temperature Transition in B. mori Silk-Elastin-like Protein Polymers. , 2017, ACS biomaterials science & engineering.

[109]  M Scott Shell,et al.  The relative entropy is fundamental to multiscale and inverse thermodynamic problems. , 2008, The Journal of chemical physics.

[110]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[111]  David L. Kaplan,et al.  Hydrophobic Drug-Triggered Self-Assembly of Nanoparticles from Silk-Elastin-Like Protein Polymers for Drug Delivery , 2014, Biomacromolecules.

[112]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[113]  Grace X. Gu,et al.  Hierarchically Enhanced Impact Resistance of Bioinspired Composites , 2017, Advanced materials.

[114]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[115]  E. Hinton,et al.  Homogenization and Structural Topology Optimization: Theory, Practice and Software , 2011 .

[116]  C. D. Walle,et al.  Effects of strain on band structure and effective masses in MoS$_2$ , 2012 .

[117]  Ying Ying Wang,et al.  Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. , 2008, ACS nano.

[118]  Markus J. Buehler,et al.  Molecular mechanics of polycrystalline graphene with enhanced fracture toughness , 2015 .

[119]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[120]  Wenwen Huang,et al.  Synergistic Integration of Experimental and Simulation Approaches for the de Novo Design of Silk-Based Materials. , 2017, Accounts of chemical research.

[121]  M. Buehler,et al.  Atomically Sharp Crack Tips in Monolayer MoS2 and Their Enhanced Toughness by Vacancy Defects. , 2016, ACS nano.

[122]  Z. S. Liu,et al.  Enhanced thermal characterization of silica aerogels through molecular dynamics simulation , 2013 .

[123]  Markus J. Buehler,et al.  Optimization of Composite Fracture Properties: Method, Validation, and Applications , 2016 .

[124]  J. Petersson,et al.  Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .

[125]  J. Shan,et al.  Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. , 2013, Nano letters.

[126]  Armando Miguel Awruch,et al.  Design optimization of composite laminated structures using genetic algorithms and finite element analysis , 2009 .

[127]  Wonseok Hwang,et al.  Surface Induced nanofiber growth by self-assembly of a silk-elastin-like protein polymer. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[128]  Christopher B. Williams,et al.  Multiple-Material Topology Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing , 2014 .

[129]  B. L. de Groot,et al.  CHARMM36m: an improved force field for folded and intrinsically disordered proteins , 2016, Nature Methods.

[130]  Ming-Chuan Leu,et al.  Additive manufacturing: technology, applications and research needs , 2013, Frontiers of Mechanical Engineering.

[131]  Markus J Buehler,et al.  Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response. , 2015, Topics in current chemistry.

[132]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[133]  T. Belytschko,et al.  A First Course in Finite Elements: Belytschko/A First Course in Finite Elements , 2007 .

[134]  Markus J Buehler,et al.  Printing of stretchable silk membranes for strain measurements. , 2016, Lab on a chip.

[135]  Timothy J Horn,et al.  Overview of Current Additive Manufacturing Technologies and Selected Applications , 2012, Science progress.

[136]  S. Sinnott,et al.  Study of C3H5+ ion deposition on polystyrene and polyethylene surfaces using molecular dynamics simulations , 2002 .

[137]  Markus J Buehler,et al.  Subtle balance of tropoelastin molecular shape and flexibility regulates dynamics and hierarchical assembly , 2016, Science Advances.

[138]  Jannik C. Meyer,et al.  Mechanical properties of polycrystalline graphene based on a realistic atomistic model , 2012, 1203.4196.

[139]  J. Yarba,et al.  Precise Mapping of the Magnetic Field in the CMS Barrel Yoke using Cosmic Rays , 2010 .

[140]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[141]  T. Ng,et al.  Free-standing graphene slit membrane for enhanced desalination , 2016 .

[142]  Nicholas Petrone,et al.  High-Strength Chemical-Vapor–Deposited Graphene and Grain Boundaries , 2013, Science.

[143]  Mark A. Marsalis,et al.  Sub-Nanometer Channels Embedded in Two-Dimensional Materials , 2017 .

[144]  Wenwen Huang,et al.  Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics , 2015, Expert opinion on drug delivery.

[145]  Jean-Pierre Hansen,et al.  Phase Transitions of the Lennard-Jones System , 1969 .

[146]  Jannik C. Meyer,et al.  Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. , 2011, Nature materials.

[147]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[148]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[149]  Christoph Junghans,et al.  Hybrid Approaches to Coarse-Graining using the VOTCA Package: Liquid Hexane , 2011 .

[150]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.

[151]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[152]  S. Fauziyah,et al.  Morphological and mechanical characterisation of the hindwing nodus from the Libellulidae family of dragonfly (Indonesia). , 2014, Arthropod structure & development.

[153]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[154]  A. Isacsson,et al.  Scaling properties of polycrystalline graphene: a review , 2016, 1612.01727.

[155]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[156]  T. Ng,et al.  Numerical characterization of ultraviolet ink fluid agglomeration and the surfactant effect in nanoinkjet printing , 2017 .

[157]  R. Mezzenga,et al.  Modulating Materials by Orthogonally Oriented β‐Strands: Composites of Amyloid and Silk Fibroin Fibrils , 2014, Advanced materials.

[158]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[159]  John A. Tainer,et al.  Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS) , 2009, Nature Methods.

[160]  Alex H de Vries,et al.  A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics. , 2009, The journal of physical chemistry. B.

[161]  M. Jiang,et al.  Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. , 2016, Nature materials.

[162]  Huajian Gao,et al.  Hyperelasticity governs dynamic fracture at a critical length scale , 2003, Nature.

[163]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[164]  S. Torquato,et al.  Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997 .

[165]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[166]  Feliciano Giustino,et al.  Dislocation-Driven Deformations in Graphene , 2012, Science.

[167]  P. Ajayan,et al.  Three-Dimensional Printed Graphene Foams. , 2017, ACS nano.

[168]  R. Mezzenga,et al.  Directed Growth of Silk Nanofibrils on Graphene and Their Hybrid Nanocomposites. , 2014, ACS macro letters.

[169]  Wenwen Huang,et al.  Design of Multistimuli Responsive Hydrogels Using Integrated Modeling and Genetically Engineered Silk–Elastin‐Like Proteins , 2016, Advanced functional materials.

[170]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[171]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[172]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[173]  J. Hoyt,et al.  Crystal-melt interface stresses: atomistic simulation calculations for a Lennard-Jones binary alloy, Stillinger-Weber Si, and embedded atom method Ni. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[174]  Charlie C. L. Wang,et al.  The status, challenges, and future of additive manufacturing in engineering , 2015, Comput. Aided Des..

[175]  E. Reed,et al.  Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2. , 2016, Nature materials.

[176]  Michael F. Ashby,et al.  The mechanical efficiency of natural materials , 2004 .

[177]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[178]  P. Kim Graphene: Across the border. , 2010, Nature materials.

[179]  Germán L. Rosano,et al.  Recombinant protein expression in Escherichia coli: advances and challenges , 2014, Front. Microbiol..

[180]  Kai-Nan An,et al.  Stretching type II collagen with optical tweezers. , 2004, Journal of biomechanics.

[181]  H. Ghandehari,et al.  Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. , 2002, Advanced drug delivery reviews.

[182]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[183]  Mark A. Marsalis,et al.  Sub-nanometre channels embedded in two-dimensional materials. , 2017, Nature materials.

[184]  T. Ng,et al.  Effects of Nanoporosity on the Mechanical Properties and Applications of Aerogels in Composite Structures , 2016 .

[185]  Grace X. Gu,et al.  Biomimetic additive manufactured polymer composites for improved impact resistance , 2016 .

[186]  Srinivasan Gopalakrishnan,et al.  Design optimization of composites using genetic algorithms and failure mechanism based failure criterion , 2008 .

[187]  T. A. Brown Gene Cloning and DNA Analysis: An Introduction , 2001 .

[188]  Grace X. Gu,et al.  Bone‐Inspired Materials by Design: Toughness Amplification Observed Using 3D Printing and Testing   , 2016 .

[189]  Xavier Periole,et al.  The Martini coarse-grained force field. , 2013, Methods in molecular biology.

[190]  Markus J Buehler,et al.  Three-Dimensional-Printing of Bio-Inspired Composites. , 2016, Journal of biomechanical engineering.

[191]  V. Shenoy,et al.  Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. , 2012, ACS nano.

[192]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.