FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance

This paper describes a probabilistic approach to the problem of recognizing places based on their appearance. The system we present is not limited to localization, but can determine that a new observation comes from a previously unseen place, and so augment its map. Effectively this is a SLAM system in the space of appearance. Our probabilistic approach allows us to explicitly account for perceptual aliasing in the environment—identical but indistinctive observations receive a low probability of having come from the same place. We achieve this by learning a generative model of place appearance. By partitioning the learning problem into two parts, new place models can be learned online from only a single observation of a place. The algorithm complexity is linear in the number of places in the map, and is particularly suitable for online loop closure detection in mobile robotics.

[1]  E. Gumbel,et al.  Statistics of extremes , 1960 .

[2]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[3]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[4]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[5]  Andrew E. Johnson,et al.  Spin-Images: A Representation for 3-D Surface Matching , 1997 .

[6]  Gregory Dudek,et al.  Mobile robot localization from learned landmarks , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[7]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine-mediated learning.

[8]  Marina Meila,et al.  An Accelerated Chow and Liu Algorithm: Fitting Tree Distributions to High-Dimensional Sparse Data , 1999, ICML.

[9]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[10]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[11]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[12]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[13]  Michael I. Jordan,et al.  Learning with Mixtures of Trees , 2001, J. Mach. Learn. Res..

[14]  Thierry Pun,et al.  Content-based query of image databases: inspirations from text retrieval , 2000, Pattern Recognit. Lett..

[15]  Ben J. A. Kröse,et al.  A probabilistic model for appearance-based robot localization , 2001, Image Vis. Comput..

[16]  Michael I. Jordan,et al.  Thin Junction Trees , 2001, NIPS.

[17]  Nathan Srebro,et al.  Maximum likelihood bounded tree-width Markov networks , 2001, Artif. Intell..

[18]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[19]  Roland Siegwart,et al.  Deriving and matching image fingerprint sequences for mobile robot localization , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[20]  Antonio Torralba,et al.  Context-based vision system for place and object recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[21]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[22]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[23]  Richard Hartley,et al.  Localisation using an image-map , 2004 .

[24]  Richard Szeliski,et al.  Visual odometry and map correlation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[25]  Peter Sanders,et al.  Engineering an External Memory Minimum Spanning Tree Algorithm , 2004, IFIP TCS.

[26]  Michael H. Bowling,et al.  Subjective Localization with Action Respecting Embedding , 2005, ISRR.

[27]  James J. Little,et al.  Vision-based global localization and mapping for mobile robots , 2005, IEEE Transactions on Robotics.

[28]  Paul Newman,et al.  Combining Visual and Spatial Appearance for Loop Closure Detection in SLAM , 2005 .

[29]  Richard Hartley,et al.  Visual localization and loopback detection with a high resolution omnidirectional camera , 2005 .

[30]  Han Wang,et al.  Appearance-Based Topological Bayesian Inference for Loop-Closing Detection in a Cross-Country Environment , 2006, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Wolfram Burgard,et al.  Supervised Learning of Places from Range Data using AdaBoost , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[32]  P. Newman,et al.  Multiple Map Intersection Detection using Visual Appearance , 2005 .

[33]  Wolfram Burgard,et al.  Robust vision-based localization by combining an image-retrieval system with Monte Carlo localization , 2005, IEEE Transactions on Robotics.

[34]  Paul Newman,et al.  SLAM-Loop Closing with Visually Salient Features , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[35]  Hongbin Zha,et al.  Vision-based Global Localization Using a Visual Vocabulary , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[36]  Ben J. A. Kröse,et al.  Hierarchical map building using visual landmarks and geometric constraints , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  Paul Newman,et al.  Outdoor SLAM using visual appearance and laser ranging , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[38]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[39]  Michael Bowling,et al.  Subjective Mapping , 2006, AAAI.

[40]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[41]  Paul Newman,et al.  Detecting Loop Closure with Scene Sequences , 2007, International Journal of Computer Vision.

[42]  Toon Goedemé Visual Navigation (Visuele navigatie) , 2006 .

[43]  João Filipe Ferreira,et al.  Integration of Multiple Sensors using Binary Features in a Bernoulli Mixture Model , 2006, 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[44]  Frank Dellaert,et al.  A Rao-Blackwellized particle filter for topological mapping , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[45]  Jana Kosecka,et al.  Probabilistic location recognition using reduced feature set , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[46]  David Filliat,et al.  A visual bag of words method for interactive qualitative localization and mapping , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[47]  Richard Szeliski,et al.  City-Scale Location Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Paul Newman,et al.  Probabilistic Appearance Based Navigation and Loop Closing , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.