Next Generation Device Grade Silicon-Germanium on Insulator

High quality single crystal silicon-germanium-on-insulator has the potential to facilitate the next generation of photonic and electronic devices. Using a rapid melt growth technique we engineer tailored single crystal silicon-germanium-on-insulator structures with near constant composition over large areas. The proposed structures avoid the problem of laterally graded SiGe compositions, caused by preferential Si rich solid formation, encountered in straight SiGe wires by providing radiating elements distributed along the structures. This method enables the fabrication of multiple single crystal silicon-germanium-on-insulator layers of different compositions, on the same Si wafer, using only a single deposition process and a single anneal process, simply by modifying the structural design and/or the anneal temperature. This facilitates a host of device designs, within a relatively simple growth environment, as compared to the complexities of other methods, and also offers flexibility in device designs within that growth environment.

[1]  C. E. Png,et al.  A sub-micron depletion-type photonic modulator in Silicon On Insulator. , 2005, Optics express.

[2]  Kapil Debnath,et al.  Cascaded modulator architecture for WDM applications. , 2012, Optics express.

[3]  T. J. Sleboda,et al.  High Contrast 40gbit/s Optical Modulation in Silicon References and Links , 2022 .

[4]  Ming C. Wu,et al.  Germanium Gate PhotoMOSFET Integrated to Silicon Photonics , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Shinichi Takagi,et al.  Characterization of 7-nm-thick strained Ge-on-insulator layer fabricated by Ge-condensation technique , 2003 .

[6]  Hwei Yin Serene Koh Rapid melt growth of silicon germanium for heterogeneousintegration on silicon , 2011 .

[7]  David J. Thomson,et al.  Coarse wavelength division (de)multiplexer using an interleaved angled multimode interferometer structure , 2013 .

[8]  Morton B. Panish,et al.  DOUBLE‐HETEROSTRUCTURE INJECTION LASERS WITH ROOM‐TEMPERATURE THRESHOLDS AS LOW AS 2300 A/cm2 , 1970 .

[9]  Yimin Kang,et al.  A self-assembled microbonded germanium/silicon heterojunction photodiode for 25 Gb/s high-speed optical interconnects , 2013, Scientific Reports.

[10]  D. P. Bruncoa Germanium partitioning in silicon during rapid solidification , 1999 .

[11]  D. Thomson,et al.  50-Gb/s Silicon Optical Modulator , 2012, IEEE Photonics Technology Letters.

[12]  M Myronov,et al.  Modulation of the absorption coefficient at 1.3 μm in Ge/SiGe multiple quantum well heterostructures on silicon. , 2011, Optics letters.

[13]  G. J. Abbaschian,et al.  The Ge−Si (Germanium-Silicon) system , 1984 .

[14]  P. Griffin,et al.  Integration of Germanium-on-Insulator and Silicon MOSFETs on a Silicon Substrate , 2006, IEEE Electron Device Letters.

[15]  James D. Plummer,et al.  Si incorporation from the seed into Ge stripes crystallized using rapid melt growth , 2014 .

[16]  F. H. Dacol,et al.  Raman scattering analysis of relaxed GexSi1−x alloy layers , 1993 .

[17]  Raymond Woo,et al.  P-Channel Germanium FinFET Based on Rapid Melt Growth , 2007, IEEE Electron Device Letters.

[18]  F Y Gardes,et al.  40 Gb/s silicon photonics modulator for TE and TM polarisations. , 2011, Optics express.

[19]  Paul Crozat,et al.  Integrated germanium optical interconnects on silicon substrates , 2014, Nature Photonics.

[20]  James D. Plummer,et al.  High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates , 2004 .

[21]  Eugene A. Fitzgerald,et al.  Strained Si, SiGe, and Ge on-insulator: review of wafer bonding fabrication techniques , 2004 .

[22]  David J. Thomson,et al.  Silicon carrier depletion modulator with 10 Gbit/s driver realized in high‐performance photonic BiCMOS , 2014 .

[23]  David J. Thomson,et al.  50 Gb/s Silicon Photonics Receiver With Low Insertion Loss , 2014, IEEE Photonics Technology Letters.

[24]  Christopher W. Leitz,et al.  Coplanar Integration of Lattice-Mismatched Semiconductors with Silicon by Wafer Bonding Ge / Si1 − x Ge x / Si Virtual Substrates , 2004 .

[25]  R. Pillarisetty,et al.  Academic and industry research progress in germanium nanodevices , 2011, Nature.

[26]  Masanobu Miyao,et al.  Giant Ge-on-Insulator Formation by Si–Ge Mixing-Triggered Liquid-Phase Epitaxy , 2009 .

[27]  Josef Humlíček,et al.  Optical spectra of SixGe1−x alloys , 1989 .

[28]  Y. Nishi,et al.  High-Performance Gate-All-Around GeOI p-MOSFETs Fabricated by Rapid Melt Growth Using Plasma Nitridation and ALD $\hbox{Al}_{2}\hbox{O}_{3}$ Gate Dielectric and Self-Aligned NiGe Contacts , 2008, IEEE Electron Device Letters.

[29]  M. Kaiser,et al.  Epitaxial growth of InP nanowires on germanium , 2004, Nature materials.

[30]  Richard A. Hogg,et al.  Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate , 2011 .

[31]  Jurgen Michel,et al.  Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators , 2008 .

[32]  Graham T. Reed,et al.  Dielectric waveguide vertically coupled to all-silicon photodiodes operating at telecommunication wavelengths , 2013 .

[33]  D. Briggs,et al.  Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy , 2003 .

[34]  A. R. Clawson,et al.  InxGa1−xAsyP1−y/InP heterojunction photodiodes , 1977 .

[35]  R. H. Saul,et al.  Vapor‐Doped Multislice LPE for Efficient GaP Green LED's , 1973 .

[36]  Ichiro Mizushima,et al.  Growth-rate-dependent laterally graded SiGe profiles on insulator by cooling-rate controlled rapid-melting-growth , 2012 .