Validity of animal models of type 1 diabetes, and strategies to enhance their utility in translational research.

[1]  Min Huang,et al.  Loss of Anergic B Cells in Prediabetic and New-Onset Type 1 Diabetic Patients , 2014, Diabetes.

[2]  Haitao Zhu,et al.  Nonhuman Primate Models of Type 1 Diabetes Mellitus for Islet Transplantation , 2014, Journal of diabetes research.

[3]  D. Melton,et al.  Generation of Functional Human Pancreatic β Cells In Vitro , 2014, Cell.

[4]  James D. Johnson,et al.  Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells , 2014, Nature Biotechnology.

[5]  M. V. Roy,et al.  Animal models in translational medicine: Validation and prediction , 2014 .

[6]  N. Benvenisty,et al.  Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells , 2014, Nature.

[7]  C. Eleazu,et al.  Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans , 2013, Journal of Diabetes & Metabolic Disorders.

[8]  Andrea Remuzzi,et al.  Islet transplantation and insulin administration relieve long-term complications and rescue the residual endogenous pancreatic β cells. , 2013, The American journal of pathology.

[9]  P. Cleary,et al.  The Long-Term Effects of Type 1 Diabetes Treatment and Complications on Health-Related Quality of Life , 2013, Diabetes Care.

[10]  Z. Cui,et al.  Development of In Vitro 3D TissueFlex® Islet Model for Diabetic Drug Efficacy Testing , 2013, PloS one.

[11]  N. Ajami,et al.  The Changing Landscape of Type 1 Diabetes: Recent Developments and Future Frontiers , 2013, Current Diabetes Reports.

[12]  Alan D. Lopez,et al.  Measuring the global burden of disease. , 2013, The New England journal of medicine.

[13]  J. Miyazaki,et al.  Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells , 2013, eLife.

[14]  J. Ludvigsson,et al.  Low C-peptide levels and decreased expression of TNF and CD45 in children with high risk of type 1 diabetes. , 2013, Clinical immunology.

[15]  Y. Shirasaki,et al.  Effect of physical restraint on glucose tolerance in cynomolgus monkeys , 2013, Journal of medical primatology.

[16]  Won-Young Jung,et al.  Porcine islet adaptation to metabolic need of monkeys in pig-to-monkey intraportal islet xenotransplantation. , 2013, Transplantation proceedings.

[17]  L. J. Gray,et al.  Real‐world factors affecting adherence to insulin therapy in patients with Type 1 or Type 2 diabetes mellitus: a systematic review , 2013, Diabetic medicine : a journal of the British Diabetic Association.

[18]  M. Faresjö,et al.  Altered immune profile from pre-diabetes to manifestation of type 1 diabetes. , 2013, Diabetes research and clinical practice.

[19]  B. Lapin,et al.  Blood Glucose Levels in Rhesus Monkeys (Macaca mulatta) and Cynomolgus Macaques (Macaca fascicularis) under Moderate Stress and after Recovery , 2013, Bulletin of Experimental Biology and Medicine.

[20]  L. Spain,et al.  Development of standardized insulin treatment protocols for spontaneous rodent models of type 1 diabetes. , 2012, Comparative medicine.

[21]  J. Slack,et al.  In vivo reprogramming of Sox9+ cells in the liver to insulin-secreting ducts , 2012, Proceedings of the National Academy of Sciences.

[22]  J. Munson,et al.  Management of adverse side-effects after chemotherapy in macaques as exemplified by streptozotocin: case studies and recommendations , 2012, Laboratory animals.

[23]  Nicole A. Turgeon,et al.  Improvement in Outcomes of Clinical Islet Transplantation: 1999–2010 , 2012, Diabetes Care.

[24]  A. King The use of animal models in diabetes research , 2012, British journal of pharmacology.

[25]  J. Munson,et al.  Successful implementation of cooperative handling eliminates the need for restraint in a complex non‐human primate disease model , 2012, Journal of medical primatology.

[26]  B. Hering,et al.  Species incompatibilities in the pig‐to‐macaque islet xenotransplant model affect transplant outcome: a comparison with allotransplantation , 2011, Xenotransplantation.

[27]  J. Munson,et al.  Refining the high-dose streptozotocin-induced diabetic non-human primate model: an evaluation of risk factors and outcomes , 2011, Experimental biology and medicine.

[28]  J. Markmann,et al.  Induction of diabetes with signs of autoimmunity in primates by the injection of multiple-low-dose streptozotocin. , 2011, Biochemical and biophysical research communications.

[29]  B. Hering,et al.  The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. , 2011, Comparative medicine.

[30]  P. Fiorina,et al.  Impact of Islet Transplantation on Diabetes Complications and Quality of Life , 2011, Current diabetes reports.

[31]  N. Eberhardt,et al.  Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models , 2011, Laboratory animals.

[32]  J. Wijdenes,et al.  The existence of an insulin-stimulated glucose and non-essential but not essential amino acid substrate interaction in diabetic pigs , 2011, BMC Biochemistry.

[33]  G. Warnock,et al.  Reduced Progression of Diabetic Microvascular Complications With Islet Cell Transplantation Compared With Intensive Medical Therapy , 2011, Transplantation.

[34]  G. Szot,et al.  Islet Transplantation in Type 1 Diabetic Patients Using Calcineurin Inhibitor-Free Immunosuppressive Protocols Based on T-Cell Adhesion or Costimulation Blockade , 2010, Transplantation.

[35]  B. Hering,et al.  Refinement of vascular access port placement in nonhuman primates: complication rates and outcomes. , 2010, Comparative medicine.

[36]  C. Mathews,et al.  Use of nonobese diabetic mice to understand human type 1 diabetes. , 2010, Endocrinology and metabolism clinics of North America.

[37]  D. Maahs,et al.  Epidemiology of type 1 diabetes. , 2010, Endocrinology and metabolism clinics of North America.

[38]  D. Greiner,et al.  Humanized mouse models to study human diseases , 2010, Current opinion in endocrinology, diabetes, and obesity.

[39]  R. Bottino,et al.  Long‐Term Controlled Normoglycemia in Diabetic Non‐Human Primates After Transplantation with hCD46 Transgenic Porcine Islets , 2009, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[40]  D. White,et al.  Diabetic rats and mice are resistant to porcine and human insulin: flawed experimental models for testing islet xenografts , 2009, Xenotransplantation.

[41]  D. Cooper,et al.  Chapter 4: Pre‐clinical efficacy and complication data required to justify a clinical trial , 2009, Xenotransplantation.

[42]  P. O’Connell Chapter 6: Patient selection for pilot clinical trials of islet xenotransplantation , 2009, Xenotransplantation.

[43]  M. V. von Herrath,et al.  Mouse Models for Type 1 Diabetes. , 2009, Drug discovery today. Disease models.

[44]  B. Hering,et al.  A novel alternative placement site and technique for totally implantable vascular access ports in non‐human primates , 2009, Journal of medical primatology.

[45]  X. Li,et al.  The effect of long‐term streptozotocin‐induced diabetes mellitus (STZ‐DM) on cynomolgus (Macaca Fascicularis) monkeys , 2009, Journal of medical primatology.

[46]  G. Nepom,et al.  Animal models of human type 1 diabetes , 2009, Nature Immunology.

[47]  C. Cobelli,et al.  In Silico Preclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes , 2009, Journal of diabetes science and technology.

[48]  James D. Johnson,et al.  A Multi-Year Analysis of Islet Transplantation Compared With Intensive Medical Therapy on Progression of Complications in Type 1 Diabetes , 2008, Transplantation.

[49]  B. Hering,et al.  2008 Update From the Collaborative Islet Transplant Registry , 2008, Transplantation.

[50]  J. Denner,et al.  Absence of transmission of potentially xenotic viruses in a prospective pig to primate islet xenotransplantation study , 2008, Journal of medical virology.

[51]  Douglas A. Melton,et al.  In vivo reprogramming of adult pancreatic exocrine cells to β-cells , 2008, Nature.

[52]  M. Jonker,et al.  Non-human primate models in allo-transplantation research: A short review , 2008 .

[53]  S. Messinger,et al.  Improved Metabolic Control and Quality of Life in Seven Patients With Type 1 Diabetes Following Islet After Kidney Transplantation , 2008, Transplantation.

[54]  S. Lenzen,et al.  The mechanisms of alloxan- and streptozotocin-induced diabetes , 2008, Diabetologia.

[55]  L. Magni,et al.  Model Predictive Control of Type 1 Diabetes: An in Silico Trial , 2007, Journal of diabetes science and technology.

[56]  Kathryn L Chapman,et al.  Preclinical safety testing of monoclonal antibodies: the significance of species relevance , 2007, Nature Reviews Drug Discovery.

[57]  R. Bottino,et al.  Induction of Diabetes in Cynomolgus Monkeys With High-dose Streptozotocin: Adverse Effects and Early Responses , 2006, Pancreas.

[58]  H. Sauerwein,et al.  Association of insulin resistance with hyperglycemia in streptozotocin-diabetic pigs: effects of metformin at isoenergetic feeding in a type 2-like diabetic pig model. , 2006, Metabolism: clinical and experimental.

[59]  Denis Dufrane,et al.  Six-Month Survival of Microencapsulated Pig Islets and Alginate Biocompatibility in Primates: Proof of Concept , 2006, Transplantation.

[60]  F. Sams-Dodd,et al.  Strategies to optimize the validity of disease models in the drug discovery process. , 2006, Drug discovery today.

[61]  U. Christians,et al.  Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates , 2006, Nature Medicine.

[62]  G. Korbutt,et al.  Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways , 2006, Nature Medicine.

[63]  E. Feldman,et al.  Cell culture modeling to test therapies against hyperglycemia-mediated oxidative stress and injury. , 2005, Antioxidants & redox signaling.

[64]  U. Galili The α‐gal epitope and the anti‐Gal antibody in xenotransplantation and in cancer immunotherapy , 2005 .

[65]  V. Dharnidharka Costimulation blockade with belatacept in renal transplantation. , 2005, The New England journal of medicine.

[66]  R. Kahn,et al.  A comprehensive review of interventions in the NOD mouse and implications for translation. , 2005, Immunity.

[67]  P. Linsley,et al.  Rational Development of LEA29Y (belatacept), a High‐Affinity Variant of CTLA4‐Ig with Potent Immunosuppressive Properties , 2005, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[68]  U. Christians,et al.  Cyclosporine toxicity in immunosuppressed streptozotocin-diabetic nonhuman primates. , 2005, Toxicology.

[69]  M. Atkinson,et al.  Satisfaction (not) guaranteed: re-evaluating the use of animal models of type 1 diabetes , 2004, Nature Reviews Immunology.

[70]  P. Liss,et al.  Differentiating between effects of streptozotocin per se and subsequent hyperglycemia on renal function and metabolism in the streptozotocin‐diabetic rat model , 2004, Diabetes/metabolism research and reviews.

[71]  T. Berney,et al.  Immunosuppression for pancreatic islet transplantation. , 2004, Transplantation proceedings.

[72]  C. Hughes,et al.  Of Mice and Not Men: Differences between Mouse and Human Immunology , 2004, The Journal of Immunology.

[73]  E. Araki,et al.  Impact of Endoplasmic Reticulum Stress Pathway on Pancreatic β-Cells and Diabetes Mellitus , 2003, Experimental biology and medicine.

[74]  H. Auchincloss,et al.  The Effect of Low Versus High Dose of Streptozotocin in Cynomolgus Monkeys (Macaca Fascilularis) , 2003, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[75]  Eric S Lander,et al.  Lymphopenia in the BB rat model of type 1 diabetes is due to a mutation in a novel immune-associated nucleotide (Ian)-related gene. , 2002, Genome research.

[76]  D. Sutherland,et al.  High-dose streptozotocin for diabetes induction in adult rhesus monkeys. , 2002, Transplantation proceedings.

[77]  H. Jun,et al.  Molecular Mechanisms for Gender Differences in Susceptibility to T Cell-Mediated Autoimmune Diabetes in Nonobese Diabetic Mice1 , 2002, The Journal of Immunology.

[78]  N. Kenyon,et al.  Calcineurin inhibitor-free CD28 blockade-based protocol protects allogeneic islets in nonhuman primates. , 2002, Diabetes.

[79]  P. Halban,et al.  Gene and cell-replacement therapy in the treatment of type 1 diabetes: how high must the standards be set? , 2001, Diabetes.

[80]  J. Fricker The pig: a new model of diabetic atherosclerosis. , 2001, Drug discovery today.

[81]  D. Greiner,et al.  Translating data from animal models into methods for preventing human autoimmune diabetes mellitus: caveat emptor and primum non nocere. , 2001, Clinical immunology.

[82]  R. Natarajan,et al.  Diabetes-induced accelerated atherosclerosis in swine. , 2001, Diabetes.

[83]  J. Stephenson Studies illuminate cause of fatal reaction in gene-therapy trial. , 2001, JAMA.

[84]  H. Jun,et al.  The role of viruses in Type I diabetes: two distinct cellular and molecular pathogenic mechanisms of virus-induced diabetes in animals , 2001, Diabetologia.

[85]  Hyun Chul Lee,et al.  Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue , 2000, Nature.

[86]  M. Meseck,et al.  Glucose-stimulated and self-limiting insulin production by glucose 6-phosphatase promoter driven insulin expression in hepatoma cells , 2000, Gene Therapy.

[87]  G. Nemerow Cell receptors involved in adenovirus entry. , 2000, Virology.

[88]  C. Janeway,et al.  Insulin-dependent diabetes mellitus and its animal models. , 1999, Current opinion in immunology.

[89]  M. Talamini,et al.  Six hundred fifty consecutive pancreaticoduodenectomies in the 1990s: pathology, complications, and outcomes. , 1997, Annals of surgery.

[90]  G. Papaccio Non-obese diabetic (NOD) mouse. , 1996, The American journal of pathology.

[91]  R. Tisch,et al.  Insulin-Dependent Diabetes Mellitus , 1996, Cell.

[92]  H Lestradet,et al.  [The discovery of insulin]. , 1996, Bulletin de l'Academie nationale de medecine.

[93]  A. Green,et al.  Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins , 1995, BMJ.

[94]  M A Boroujerdi,et al.  A simulation model for glucose kinetics and estimates of glucose utilization rate in type 1 diabetic patients. , 1995, The American journal of physiology.

[95]  D. Rogers,et al.  The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus , 1994 .

[96]  V. Grill,et al.  Irreversible loss of normal beta-cell regulation by glucose in neonatally streptozotocin diabetic rats , 1994, Diabetologia.

[97]  R. Bontrop,et al.  The biologic importance of conserved major histocompatibility complex class II motifs in primates. , 1993, Human immunology.

[98]  S. Genuth,et al.  The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. , 1993, The New England journal of medicine.

[99]  T. Chalmers,et al.  Meta-analysis of effects of intensive blood-glucose control on late complications of type I diabetes , 1993, The Lancet.

[100]  A. Signore,et al.  NOD mouse colonies around the world--recent facts and figures. , 1993, Immunology today.

[101]  G. Tomadze,et al.  Streptozotocin-Induced Diabetes Mellitus in Pigs , 1993, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[102]  R. Bontrop,et al.  Evolutionary conservation of major histocompatibility complex- DR/peptide/T cell interactions in primates , 1993, The Journal of experimental medicine.

[103]  T. Starzl,et al.  Effect of FK 506 on human pancreatic islets following renal subcapsular transplantation in diabetic nude mice. , 1992, Transplantation proceedings.

[104]  T. Starzl,et al.  HUMAN ISLET ISOLATION AND ALLOTRANSPLANTATION IN 22 CONSECUTIVE CASES 1, 2 , 1992, Transplantation.

[105]  D. Guberski,et al.  Induction of type I diabetes by Kilham's rat virus in diabetes-resistant BB/Wor rats. , 1991, Science.

[106]  H. Kolb,et al.  Low dose streptozotocin causes stimulation of the immune system and of anti‐islet cytotoxicity in mice , 1991, Clinical and experimental immunology.

[107]  T. Starzl,et al.  In vivo effect of FK506 on human pancreatic islets. , 1991, Transplantation.

[108]  P. Lacy,et al.  Insulin Independence After Islet Transplantation Into Type I Diabetic Patient , 1990, Diabetes.

[109]  A. Signore,et al.  Lessons from the NOD mouse for the pathogenesis and immunotherapy of human Type 1 (insulin-dependent) diabetes mellitus , 1989, Diabetologia.

[110]  M. Baur,et al.  Genetic heterogeneity, modes of inheritance, and risk estimates for a joint study of Caucasians with insulin-dependent diabetes mellitus. , 1988, American journal of human genetics.

[111]  B. Chandrasekar,et al.  Effect of prolonged administration of cyclosporin A on (pro)insulin biosynthesis and insulin release by rat islets of Langerhans. , 1988, Biochemical pharmacology.

[112]  D. Greiner,et al.  Absence of the RT-6 T cell subset in diabetes-prone BB/W rats. , 1986, Journal of immunology.

[113]  C. Chappel,et al.  The discovery and development of the BB rat colony: an animal model of spontaneous diabetes mellitus. , 1983, Metabolism: clinical and experimental.

[114]  H. Kolb,et al.  Low-dose streptozotocin-induced autoimmune diabetes is under the genetic control of the major histocompatibility complex in mice , 1982, Diabetologia.

[115]  A. Rossini,et al.  Spontaneous Autoimmune Diabetes Mellitus in the BB Rat , 1982, Diabetes.

[116]  C. Howard Nonhuman Primates as Models for the Study of Human Diabetes Mellitus , 1982, Diabetes.

[117]  N. Wong,et al.  Acute effects of streptozotocin diabetes on rat renal function. , 1979, The Journal of laboratory and clinical medicine.

[118]  W. Chick,et al.  Studies of streptozotocin-induced insulitis and diabetes. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[119]  P. Lacy,et al.  Transplantation of intact pancreatic islets in rats. , 1972, Surgery.

[120]  A. Renold,et al.  Diabetogenic action of streptozotocin: relationship of dose to metabolic response. , 1969, The Journal of clinical investigation.

[121]  B. Ruggeri,et al.  Animal models of human disease: challenges in enabling translation. , 2014, Biochemical pharmacology.

[122]  R. Bottino,et al.  Limitations of the pig‐to‐non‐human primate islet transplantation model , 2013, Xenotransplantation.

[123]  P. Cleary,et al.  The Long-Term Effects of Type 1 Diabetes Treatment andComplications on Health-Related Quality of Life A 23-year follow-up of the Diabetes Control and Complications / Epidemiology of Diabetes Interventions and Complications cohort , 2013 .

[124]  M. Graham,et al.  The usefulness and limitations of the diabetic macaque model in evaluating long‐term porcine islet xenograft survival , 2013, Xenotransplantation.

[125]  J. Nyman,et al.  A health economic analysis of clinical islet transplantation , 2012, Clinical transplantation.

[126]  Jae-Hyung Chang,et al.  Assessment of diabetic nephropathy in the Akita mouse. , 2012, Methods in molecular biology.

[127]  K. Naka,et al.  The Role of T regulatory Cells (Tregs) in the Development and Prevention of Type 1 Diabetes , 2011 .

[128]  J. Driver,et al.  Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease , 2010, Seminars in Immunopathology.

[129]  Crispin J. Miller,et al.  Cell Culture , 2010, Cell.

[130]  K. Takeuchi,et al.  Rodent Models of Diabetes , 2010 .

[131]  M. Vaccari,et al.  Memory T cells in Rhesus macaques. , 2010, Advances in experimental medicine and biology.

[132]  R. Bottino,et al.  Metabolic aspects of pig-to-monkey (Macaca fascicularis) islet transplantation: implications for translation into clinical practice , 2007, Diabetologia.

[133]  Mark S. Anderson,et al.  The NOD mouse: a model of immune dysregulation. , 2005, Annual review of immunology.

[134]  M. Larsen,et al.  Use of the Göttingen minipig as a model of diabetes, with special focus on type 1 diabetes research. , 2004, ILAR journal.

[135]  L. Gaur Nonhuman primate models for islet transplantation in type 1 diabetes research. , 2004, ILAR journal.

[136]  J. Rosmalen,et al.  Subsets of Macrophages and Dendritic Cells in Nonobese Diabetic Mouse Pancreatic Inflammatory Infiltrates: Correlation with the Development of Diabetes , 2000, Laboratory Investigation.

[137]  A. Kirk Transplantation tolerance: a look at the nonhuman primate literature in the light of modern tolerance theories. , 1999, Critical reviews in immunology.

[138]  D. Cheţa,et al.  Animal Models of Type I (Insulin-Dependent) Diabetes Mellitus , 1998, Journal of pediatric endocrinology & metabolism : JPEM.

[139]  M. Jd,et al.  Animal models in diabetes research. , 1994, Archives of medical research.

[140]  E. Leiter Multiple low-dose streptozotocin-induced hyperglycemia and insulitis in C57BL mice: influence of inbred background, sex, and thymus. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[141]  P. Lacy,et al.  Transplantation of islets of Langerhans in diabetic rhesus monkeys. , 1975, Surgery.