Metarhizium anisopliae blastospores are highly virulent to adult Aedes aegypti, an important arbovirus vector

[1]  S. Gomes,et al.  Production of conidia using different culture media modifies the virulence of the entomopathogenic fungus Metarhiziumys against Aedes aegypti larvae , 2021, Journal of vector borne diseases.

[2]  O. Mediannikov,et al.  Mosquito-Borne Diseases Emergence/Resurgence and How to Effectively Control It Biologically , 2020, Pathogens.

[3]  S. Woo,et al.  Beauveria bassiana for the simultaneous control of Aedes albopictus and Culex pipiens mosquito adults shows high conidia persistence and productivity , 2019, AMB Express.

[4]  S. Gomes,et al.  Aedes aegypti Pupae are Highly Susceptible to Infection by Metarhizium anisopliae Blastospores , 2019, Journal of Pure and Applied Microbiology.

[5]  M. Kulkarni,et al.  Arbovirus vectors of epidemiological concern in the Americas: A scoping review of entomological studies on Zika, dengue and chikungunya virus vectors , 2019, bioRxiv.

[6]  T. Butt,et al.  Metarhizium brunneum infection dynamics differ at the cuticle interface of susceptible and tolerant morphs of Galleria mellonella , 2019, Virulence.

[7]  M. Jackson,et al.  Comparison of aerial conidia and blastospores from two entomopathogenic fungi against Diaphorina citri (Hemiptera: Liviidae) under laboratory and greenhouse conditions , 2018, Biocontrol Science and Technology.

[8]  T. Butt,et al.  Fungal infection dynamics in response to temperature in the lepidopteran insect Galleria mellonella , 2018, Insect science.

[9]  R. Samuels,et al.  Improving the delivery and efficiency of fungus-impregnated cloths for control of adult Aedes aegypti using a synthetic attractive lure , 2018, Parasites & Vectors.

[10]  J. Powell Mosquito-Borne Human Viral Diseases: Why Aedes aegypti? , 2018, The American journal of tropical medicine and hygiene.

[11]  R. Samuels,et al.  A new method of deploying entomopathogenic fungi to control adult Aedes aegypti mosquitoes , 2018 .

[12]  Publisher's Note , 2018, Anaesthesia.

[13]  M. Thomas Biological control of human disease vectors: a perspective on challenges and opportunities , 2017, BioControl.

[14]  R. Samuels,et al.  Differential Pathogenicity of Metarhizium Blastospores and Conidia Against Larvae of Three Mosquito Species , 2017, Journal of Medical Entomology.

[15]  Giovanni Benelli,et al.  Biological Control of Mosquito Vectors: Past, Present, and Future , 2016, Insects.

[16]  Jeffrey G. Scott,et al.  Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. , 2016, Pesticide biochemistry and physiology.

[17]  T. Maffeis,et al.  Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality , 2016, PLoS pathogens.

[18]  M. Jackson,et al.  Improved shelf life of dried Beauveria bassiana blastospores using convective drying and active packaging processes , 2016, Applied Microbiology and Biotechnology.

[19]  S. Gomes,et al.  Entomopathogenic organisms: conceptual advances and real-world applications for mosquito biological control , 2016 .

[20]  R. Samuels,et al.  Monitoring persistence of the entomopathogenic fungus Metarhizium anisopliae under simulated field conditions with the aim of controlling adult Aedes aegypti (Diptera: Culicidae) , 2014, Parasites & Vectors.

[21]  C. Sandoval-Coronado,et al.  Effect of culture medium on the production and virulence of submerged spores of Metarhizium anisopliae and Beauveria bassiana against larvae and adults of Aedes aegypti (Diptera: Culicidae) , 2014 .

[22]  R. Samuels,et al.  Testing fungus impregnated cloths for the control of adult Aedes aegypti under natural conditions , 2013, Parasites & Vectors.

[23]  C. Beierkuhnlein,et al.  Extrinsic Incubation Period of Dengue: Knowledge, Backlog, and Applications of Temperature Dependence , 2013, PLoS neglected tropical diseases.

[24]  John S. Brownstein,et al.  The global distribution and burden of dengue , 2013, Nature.

[25]  P. Gething,et al.  Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus , 2012, PLoS neglected tropical diseases.

[26]  W. Takken,et al.  Anopheline and culicine mosquitoes are not repelled by surfaces treated with the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana , 2010, Parasites & Vectors.

[27]  Adriano Rodrigues de Paula,et al.  Susceptibility of adult Aedes aegypti (Diptera: Culicidae) to infection by Metarhizium anisopliae and Beauveria bassiana: prospects for Dengue vector control , 2008 .

[28]  Stephen P. Wraight,et al.  Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types ☆ , 2007 .

[29]  D. Sim,et al.  Fungal Pathogen Reduces Potential for Malaria Transmission , 2005, Science.

[30]  S. Leather,et al.  Effects of different formulations on viability and medium-term storage of Metarhizium anisopliae conidia , 2002 .

[31]  S. Clark,et al.  The germination of oil-formulated conidia of the insect pathogen, Metarhizium anisopliae , 1999 .

[32]  J. Vandenberg,et al.  Relative efficacy of blastospores and aerial conidia of Paecilomyces fumosoroseus against the russian wheat aphid. , 1998, Journal of invertebrate pathology.

[33]  A. Trinci,et al.  Influence of cultural conditions on the virulence of conidia and blastospores of Beauveria bassiana to the green leafhopper, Nephotettix virescens , 1991 .

[34]  G. L. Patourel,et al.  Infectivity of oil and water formulations of Beauveria bassiana (Deuteromycotina: Hyphomycetes) to the cocoa weevil pest Pantorhytes plutus (Coleoptera: Curculionidae) , 1988 .

[35]  R. Hall Pathogenicity ofVerticillium lecani conidia and blastospores against the aphid,Macrosiphoniella sanborni , 1979, Entomophaga.

[36]  G. Mascarin,et al.  Mass Production of Fungal Entomopathogens , 2017 .

[37]  Jae Su Kim,et al.  Role of Entomopathogenic Fungi in Integrated Pest Management , 2014 .

[38]  N. Jonsson,et al.  Laboratory studies on Australian isolates of Metarhizium anisopliae as a biopesticide for the cattle tick Boophilus microplus. , 2008, Journal of invertebrate pathology.

[39]  E. Scholte,et al.  Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. , 2006, Journal of invertebrate pathology.

[40]  M. Jackson,et al.  Germination of conidia and blastospores of Paecilomyces fumosoroseus on the cuticle of the silverleaf whitefly, Bemisia argentifolii , 2004, Mycopathologia.

[41]  D. L. Johnson,et al.  Biological control of locusts and grasshoppers. , 2001, Annual review of entomology.

[42]  N. Magan,et al.  Physiological approaches to improving the ecological fitness of fungal biocontrol agents. , 2001 .

[43]  G. Zimmermann,et al.  Viability and virulence of blastospores of Metarhizium anisopliae (Metch.) Sorokin after storage in various liquids at different temperatures , 1994 .