The structure of endo-beta-1,4-galactanase from Bacillus licheniformis in complex with two oligosaccharide products.

[1]  M. Siika‐aho,et al.  Purification and characterization of Aspergillus β-d-galactanases acting on β-1,4- and β-1,3/6-linked arabinogalactans , 2003 .

[2]  T. Borchert,et al.  Structure of two fungal β‐1,4‐galactanases: Searching for the basis for temperature and pH optimum , 2003, Protein science : a publication of the Protein Society.

[3]  B. Henrissat,et al.  Aspergillus aculeatus beta-1,4-galactanase: substrate recognition and relations to other glycoside hydrolases in clan GH-A. , 2002, Biochemistry.

[4]  Didier Nurizzo,et al.  Promiscuity in ligand-binding: The three-dimensional structure of a Piromyces carbohydrate-binding module, CBM29-2, in complex with cello- and mannohexaose , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  K. Wilson,et al.  Oligosaccharide binding to family 11 xylanases: both covalent intermediate and mutant product complexes display (2,5)B conformations at the active centre. , 2002, Acta crystallographica. Section D, Biological crystallography.

[6]  Spencer J. Williams,et al.  High-resolution crystal structures of the lectin-like xylan binding domain from Streptomyces lividans xylanase 10A with bound substrates reveal a novel mode of xylan binding. , 2002, Biochemistry.

[7]  J. Jenkins,et al.  X‐ray crystallographic study of xylopentaose binding to Pseudomonas fluorescens xylanase A , 2000, Proteins.

[8]  M. McCann,et al.  Pectin engineering: modification of potato pectin by in vivo expression of an endo-1,4-beta-D-galactanase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  S. Kauppinen,et al.  Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. , 2000, Structure.

[10]  W. Zimmermann,et al.  High-resolution native and complex structures of thermostable beta-mannanase from Thermomonospora fusca - substrate specificity in glycosyl hydrolase family 5. , 1998, Structure.

[11]  T. A. Jones,et al.  Databases in protein crystallography. , 1998, Acta crystallographica. Section D, Biological crystallography.

[12]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[13]  B. Henrissat,et al.  Evidence that galactanase A from Pseudomonas fluorescens subspecies cellulosa is a retaining family 53 glycosyl hydrolase in which E161 and E270 are the catalytic residues. , 1997, Biochemistry.

[14]  S. Kauppinen,et al.  The crystal structure of rhamnogalacturonase A from Aspergillus aculeatus: a right-handed parallel beta helix. , 1997, Structure.

[15]  G J Davies,et al.  Nomenclature for sugar-binding subsites in glycosyl hydrolases. , 1997, The Biochemical journal.

[16]  M. Himmel,et al.  Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. , 1996, Biochemistry.

[17]  A Bairoch,et al.  Updating the sequence-based classification of glycosyl hydrolases. , 1996, The Biochemical journal.

[18]  B. Henrissat,et al.  Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Pickersgill,et al.  β‐Glucosidase, β‐galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes wit 8‐fold β/α architecture and with two conserved glutamates near the carboxy‐terminal ends of β‐strands four and seven , 1995 .

[20]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[21]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[22]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[23]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[24]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[25]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[26]  C. A. Duda,et al.  Conformational properties of β-(1→4)-D-galactan determined from chiroptical measurements , 1991 .

[27]  Norman L. Allinger,et al.  A Molecular Mechanics Force Field (MM3) for Alcohols and Ethers , 1990 .

[28]  A. Preusser,et al.  Algorithm 671: FARB-E-2D: fill area with bicubics on rectangles—a contour plot program , 1989, TOMS.

[29]  P. Albersheim,et al.  Structure of the backbone of rhamnogalacturonan i a pectic polysaccharide in the primary cell walls of plants , 1985 .

[30]  P Albersheim,et al.  Structure of Plant Cell Walls: VIII. A New Pectic Polysaccharide. , 1978, Plant physiology.

[31]  J. Labavitch,et al.  Structure of plant cell walls. Purification and characterization of a beta-1,4-galactanase which degrades a structural component of the primary cell walls of dicots. , 1976, The Journal of biological chemistry.

[32]  G Murshudov,et al.  The three-dimensional structure of a Trichoderma reesei beta-mannanase from glycoside hydrolase family 5. , 2000, Acta crystallographica. Section D, Biological crystallography.

[33]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[34]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[35]  P. M. Nielsen,et al.  Application of tailormade pectinases , 1996 .

[36]  F. Kormelink,et al.  Purification and characterization of Endo-1,4-β-D-galactanases from Aspergillus niger and Aspergillus aculeatus: Use in combination with arabinanases from Aspergillus niger in enzymic conversion of potato arabinogalactan , 1991 .

[37]  J. Vigouroux,et al.  Endo-β-1,4-d-galactanase from Aspergillus niger var. aculeatus: Purification and some properties , 1991 .

[38]  Alan G. Darvill,et al.  The Pectic Polysaccharides of Primary Cell Walls , 1990 .

[39]  Jeffrey B. Harborne,et al.  Methods in plant biochemistry , 1989 .

[40]  S. Emi,et al.  Arabinogalactanase of Bacillus subtilis var. amylosacchariticus , 1988 .

[41]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .