Linear and nonlinear inversion algorithms applied in nondestructive evaluation

Convenient tools for nondestructive evaluation of solids can be electromagnetic and/or elastodynamic waves; since their governing equations, including acoustics, exhibit strong structural similarities, the same inversion concepts apply. In particular, the heuristic SAFT algorithm (synthetic aperture focusing technique) can be—and has been—utilized for all kinds of waves, once a scalar approximation can be justified. Relating SAFT to inverse scattering in terms of diffraction tomography, it turns out that linearization is the most stringent inherent approximation. Hence, the results of nonlinear inversion schemes such as contrast source inversion are compared to the output of SAFT for a carefully designed ultrasonic experiment. In addition, it will be shown via synthetic as well as experimental data that SAFT can be extended to electromagnetic vector fields and to an inhomogeneous and/or anisotropic background material.

[1]  P. M. van den Berg,et al.  Inverse scattering in elasticity — a modified gradient approach , 2000 .

[2]  R. W. McCahan,et al.  Special Session on Image Reconstruction Using Real Data , 1996 .

[3]  K. Helbig Foundations of Anisotropy for Exploration Seismics , 1994 .

[4]  Anyong Qing,et al.  Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm , 2001, IEEE Trans. Geosci. Remote. Sens..

[5]  P. M. Berg,et al.  A modified gradient method for two-dimensional problems in tomography , 1992 .

[6]  Klaus Mayer,et al.  Inverse Methods and Imaging , 1993 .

[7]  Samuel H. Gray,et al.  From the Hagedoorn imaging technique to Kirchhoff migration and inversion , 2001 .

[8]  Roel Snieder,et al.  GENERAL THEORY OF ELASTIC WAVE SCATTERING , 2002 .

[9]  René Marklein,et al.  Three-dimensional imaging system based on Fourier transform synthetic aperture focusing technique , 1990 .

[10]  W. Chew,et al.  Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. , 1990, IEEE transactions on medical imaging.

[11]  Andreas Kirsch,et al.  Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory , 1999 .

[12]  A K Louis,et al.  The approximate inverse for solving an inverse scattering problem for acoustic waves in an inhomogeneous medium , 1999 .

[13]  Anton G. Tijhuis,et al.  Born-type reconstruction of material parameters of an inhomogeneous, lossy dielectric slab from reflected-field data , 1989 .

[14]  M. Saillard,et al.  Special section: Testing inversion algorithms against experimental data , 2001 .

[15]  Jack K. Cohen,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .

[16]  Aria Abubakar,et al.  Total variation as a multiplicative constraint for solving inverse problems , 2001, IEEE Trans. Image Process..

[17]  R Dändliker,et al.  Reconstruction of the three-dimensional refractive index from scattered waves , 1970 .

[18]  J. Fitch Synthetic Aperture Radar , 1987 .

[19]  T. Habashy,et al.  Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering , 1993 .

[20]  P. M. Berg,et al.  Extended contrast source inversion , 1999 .

[21]  R. E. Kleinman,et al.  Second annual special session on image reconstruction using real data , 1997 .

[22]  R. Kleinman,et al.  The Third Annual Special Session On Image Reconstruction Using Real Data, Part 1 , 1999, IEEE Antennas and Propagation Magazine.

[23]  W. S. Wu,et al.  Analysis and design considerations for a real-time system for non-destructive evaluation in the nuclear industry , 1982 .

[24]  Alfred K. Louis,et al.  Approximate inverse for linear and some nonlinear problems , 1995 .

[25]  R. Dandliker,et al.  SYMPOSIUM PAPER: Reconstruction of the three-dimensional refractive index from scattered waves , 1970 .

[26]  J. Bladel Singular electromagnetic fields and sources , 1996 .

[27]  A. T. Hoop Handbook of radiation and scattering of waves , 1995 .

[28]  T. Weiland,et al.  Maxwell's Grid Equations , 1990 .

[29]  Andreas Kirsch,et al.  Characterization of the shape of a scattering obstacle using the spectral data of the far field operator , 1998 .

[30]  Alfred K. Louis Approximate inverse for linear and some nonlinear problems , 1995 .

[31]  René Marklein,et al.  Applied Inversion in Nondestructive Testing , 1997 .

[32]  P. M. Berg,et al.  A contrast source inversion method , 1997 .

[33]  M. Brandfaß,et al.  A Unified Theory of Multidimensional Electromagnetic Vector Inverse Scattering Within the Kirchhoff or Born Approximation , 1994 .

[34]  Norman Bleistein,et al.  Mathematics of Wave Phenomena , 1984 .

[35]  René Marklein,et al.  Numerical modeling of elastic wave propagation and scattering with EFIT — elastodynamic finite integration technique , 1995 .

[36]  M. Brandfass,et al.  Inverse Scattering with Acoustic, Electromagnetic, and Elastic Waves as Applied in Nondesctructive Evaluation , 1999 .

[37]  Peter Hubral Foundations of Anisotropy for Exploration Seismics , 1995 .

[38]  G. Crosta The third annual special session on image reconstruction using real data. 2. The application of back-propagation algorithms to the Ipswich data: preliminary results , 1999 .

[39]  Karl J. Langenberg Linear Scalar Inverse Scattering , 2002 .

[40]  Ann Franchois,et al.  Contribution a la tomographie microonde : algorithmes de reconstruction quantitative et verifications experimentales , 1993 .

[41]  Anyong Qing,et al.  Linear and nonlinear iterative scalar inversion of multi-frequency multi-bistatic experimental electromagnetic scattering data , 2001 .

[42]  T. Arens,et al.  Linear sampling methods for 2D inverse elastic wave scattering , 2001 .

[43]  René Marklein,et al.  Applications to Nondestructive Testing with Ultrasound , 2002 .

[44]  A. Roger,et al.  Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem , 1981 .

[45]  D. Colton,et al.  A simple method using Morozov's discrepancy principle for solving inverse scattering problems , 1997 .

[46]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[47]  J. Hagedoorn,et al.  A process of seismic reflection interpretation , 1954 .

[48]  P. M. van den Berg,et al.  Two‐dimensional location and shape reconstruction , 1994 .

[49]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[50]  A. Qing,et al.  Microwave Imaging of Parallel Perfectly Conducting Cylinders With Transverse Electric Scattering Data , 2001 .

[51]  A. Abubakar Three-Dimensional Nonlinear Inversion of Electrical Conductivity , 2000 .

[52]  Kun Hua Chen Numerical Modeling of Elastic Wave Propagation In Anisotropic Inhomogeneous Media: A Finite-element Approach , 1984 .