Linear and nonlinear inversion algorithms applied in nondestructive evaluation
暂无分享,去创建一个
René Marklein | Klaus Mayer | R. Hannemann | V. Schmitz | R. Marklein | K. Mayer | R. Hannemann | T. Krylow | K. Balasubramanian | K. Langenberg | V. Schmitz | Karl J. Langenberg | Kannan Balasubramanian | T. Krylow
[1] P. M. van den Berg,et al. Inverse scattering in elasticity — a modified gradient approach , 2000 .
[2] R. W. McCahan,et al. Special Session on Image Reconstruction Using Real Data , 1996 .
[3] K. Helbig. Foundations of Anisotropy for Exploration Seismics , 1994 .
[4] Anyong Qing,et al. Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm , 2001, IEEE Trans. Geosci. Remote. Sens..
[5] P. M. Berg,et al. A modified gradient method for two-dimensional problems in tomography , 1992 .
[6] Klaus Mayer,et al. Inverse Methods and Imaging , 1993 .
[7] Samuel H. Gray,et al. From the Hagedoorn imaging technique to Kirchhoff migration and inversion , 2001 .
[8] Roel Snieder,et al. GENERAL THEORY OF ELASTIC WAVE SCATTERING , 2002 .
[9] René Marklein,et al. Three-dimensional imaging system based on Fourier transform synthetic aperture focusing technique , 1990 .
[10] W. Chew,et al. Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. , 1990, IEEE transactions on medical imaging.
[11] Andreas Kirsch,et al. Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory , 1999 .
[12] A K Louis,et al. The approximate inverse for solving an inverse scattering problem for acoustic waves in an inhomogeneous medium , 1999 .
[13] Anton G. Tijhuis,et al. Born-type reconstruction of material parameters of an inhomogeneous, lossy dielectric slab from reflected-field data , 1989 .
[14] M. Saillard,et al. Special section: Testing inversion algorithms against experimental data , 2001 .
[15] Jack K. Cohen,et al. Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .
[16] Aria Abubakar,et al. Total variation as a multiplicative constraint for solving inverse problems , 2001, IEEE Trans. Image Process..
[17] R Dändliker,et al. Reconstruction of the three-dimensional refractive index from scattered waves , 1970 .
[18] J. Fitch. Synthetic Aperture Radar , 1987 .
[19] T. Habashy,et al. Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering , 1993 .
[20] P. M. Berg,et al. Extended contrast source inversion , 1999 .
[21] R. E. Kleinman,et al. Second annual special session on image reconstruction using real data , 1997 .
[22] R. Kleinman,et al. The Third Annual Special Session On Image Reconstruction Using Real Data, Part 1 , 1999, IEEE Antennas and Propagation Magazine.
[23] W. S. Wu,et al. Analysis and design considerations for a real-time system for non-destructive evaluation in the nuclear industry , 1982 .
[24] Alfred K. Louis,et al. Approximate inverse for linear and some nonlinear problems , 1995 .
[25] R. Dandliker,et al. SYMPOSIUM PAPER: Reconstruction of the three-dimensional refractive index from scattered waves , 1970 .
[26] J. Bladel. Singular electromagnetic fields and sources , 1996 .
[27] A. T. Hoop. Handbook of radiation and scattering of waves , 1995 .
[28] T. Weiland,et al. Maxwell's Grid Equations , 1990 .
[29] Andreas Kirsch,et al. Characterization of the shape of a scattering obstacle using the spectral data of the far field operator , 1998 .
[30] Alfred K. Louis. Approximate inverse for linear and some nonlinear problems , 1995 .
[31] René Marklein,et al. Applied Inversion in Nondestructive Testing , 1997 .
[32] P. M. Berg,et al. A contrast source inversion method , 1997 .
[33] M. Brandfaß,et al. A Unified Theory of Multidimensional Electromagnetic Vector Inverse Scattering Within the Kirchhoff or Born Approximation , 1994 .
[34] Norman Bleistein,et al. Mathematics of Wave Phenomena , 1984 .
[35] René Marklein,et al. Numerical modeling of elastic wave propagation and scattering with EFIT — elastodynamic finite integration technique , 1995 .
[36] M. Brandfass,et al. Inverse Scattering with Acoustic, Electromagnetic, and Elastic Waves as Applied in Nondesctructive Evaluation , 1999 .
[37] Peter Hubral. Foundations of Anisotropy for Exploration Seismics , 1995 .
[38] G. Crosta. The third annual special session on image reconstruction using real data. 2. The application of back-propagation algorithms to the Ipswich data: preliminary results , 1999 .
[39] Karl J. Langenberg. Linear Scalar Inverse Scattering , 2002 .
[40] Ann Franchois,et al. Contribution a la tomographie microonde : algorithmes de reconstruction quantitative et verifications experimentales , 1993 .
[41] Anyong Qing,et al. Linear and nonlinear iterative scalar inversion of multi-frequency multi-bistatic experimental electromagnetic scattering data , 2001 .
[42] T. Arens,et al. Linear sampling methods for 2D inverse elastic wave scattering , 2001 .
[43] René Marklein,et al. Applications to Nondestructive Testing with Ultrasound , 2002 .
[44] A. Roger,et al. Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem , 1981 .
[45] D. Colton,et al. A simple method using Morozov's discrepancy principle for solving inverse scattering problems , 1997 .
[46] R. Kress,et al. Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .
[47] J. Hagedoorn,et al. A process of seismic reflection interpretation , 1954 .
[48] P. M. van den Berg,et al. Two‐dimensional location and shape reconstruction , 1994 .
[49] A. Kirsch,et al. A simple method for solving inverse scattering problems in the resonance region , 1996 .
[50] A. Qing,et al. Microwave Imaging of Parallel Perfectly Conducting Cylinders With Transverse Electric Scattering Data , 2001 .
[51] A. Abubakar. Three-Dimensional Nonlinear Inversion of Electrical Conductivity , 2000 .
[52] Kun Hua Chen. Numerical Modeling of Elastic Wave Propagation In Anisotropic Inhomogeneous Media: A Finite-element Approach , 1984 .