Highly luminescent and stable lead-free cesium copper halide perovskite powders for UV-pumped phosphor-converted light-emitting diodes

Lead halide perovskites have drawn extensive attention over recent decades owing to their outstanding photoelectric performances. However, their toxicity and instability are big issues that need to be solved for further commercialization. Herein, we adopt a facile dry ball milling method to synthesize lead-free Cs3Cu2X5 (X=I, Cl) perovskites with photoluminescence (PL) quantum yield up to 60%. The optical features including broad emission spectrum, large Stokes shift, and long PL lifetime can be attributed to self-trapped exciton recombination. The as-synthesized blue emissive Cs3Cu2I5 and green emissive Cs3Cu2Cl5 lead-free perovskite powders have good thermal stability and photostability. Furthermore, UV-pumped phosphor-converted light-emitting diodes were obtained by using Cs3Cu2I5 and Cs3Cu2Cl5 as phosphors.

[1]  Yejing Liu,et al.  0D Cs3 Cu2 X5 (X = I, Br, and Cl) Nanocrystals: Colloidal Syntheses and Optical Properties. , 2019, Small.

[2]  Hongyang Zhu,et al.  Zn-Alloyed All-Inorganic Halide Perovskite-Based White Light-Emitting Diodes with Superior Color Quality , 2019, Scientific Reports.

[3]  M. Grätzel,et al.  Mechanoperovskites for Photovoltaic Applications: Preparation, Characterization, and Device Fabrication. , 2019, Accounts of chemical research.

[4]  Lei Sun,et al.  Colloidal Synthesis and Optical Properties of All-Inorganic Low-Dimensional Cesium Copper Halide Nanocrystals. , 2019, Angewandte Chemie.

[5]  Xudong Wang,et al.  Intrinsic Self-Trapped Emission in 0D Lead-Free (C4H14N2)2In2Br10 Single Crystal. , 2019, Angewandte Chemie.

[6]  Dawei Di,et al.  Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures , 2019, Nature Photonics.

[7]  Hongyang Zhu,et al.  Mg2+‐Alloyed All‐Inorganic Halide Perovskites for White Light‐Emitting Diodes by 3D‐Printing Method , 2019, Advanced Optical Materials.

[8]  Biwu Ma,et al.  Low dimensional metal halide perovskites and hybrids , 2019, Materials Science and Engineering: R: Reports.

[9]  Yen‐Pei Fu,et al.  Photocatalytic 4-nitrophenol degradation and oxygen evolution reaction in CuO/g-C3N4 composites prepared by deep eutectic solvent-assisted chlorine doping. , 2019, Dalton transactions.

[10]  N. J. Davis,et al.  Synthesis, Characterization, and Morphological Control of Cs2CuCl4 Nanocrystals , 2019, The Journal of Physical Chemistry C.

[11]  Hao Ming Chen,et al.  Harnessing Dielectric Confinement on Tin Perovskites to Achieve Emission Quantum Yield up to 21. , 2019, Journal of the American Chemical Society.

[12]  L. Deng,et al.  Ultralow-Threshold and Color-Tunable Continuous-Wave Lasing at Room-Temperature from In Situ Fabricated Perovskite Quantum Dots. , 2019, The journal of physical chemistry letters.

[13]  Bina Thapa,et al.  Sinkhole susceptibility mapping in Marion County, Florida: Evaluation and comparison between analytical hierarchy process and logistic regression based approaches , 2019, Scientific Reports.

[14]  Wei Huang,et al.  Recent Progress in Metal Halide Perovskite Micro‐ and Nanolasers , 2019, Advanced Optical Materials.

[15]  William W. Yu,et al.  Metal Halide Perovskite Light‐Emitting Devices: Promising Technology for Next‐Generation Displays , 2019, Advanced Functional Materials.

[16]  Y. Ouyang,et al.  Distinct green electroluminescence from lead-free CsCuBr2 halide micro-crosses. , 2019, Chemical communications.

[17]  Fernando Gomollón-Bel Ten Chemical Innovations That Will Change Our World: IUPAC identifies emerging technologies in Chemistry with potential to make our planet more sustainable , 2019, Chemistry International.

[18]  Honglang Li,et al.  Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature , 2019, Journal of Materials Chemistry C.

[19]  Xudong Wang,et al.  A Highly Red-Emissive Lead-Free Indium-Based Perovskite Single Crystal for Sensitive Water Detection. , 2019, Angewandte Chemie.

[20]  H. Nhalil,et al.  Near-Unity Photoluminescence Quantum Yield in Blue-Emitting Cs3Cu2Br5–xIx (0 ≤ x ≤ 5) , 2019, ACS Applied Electronic Materials.

[21]  Yong Cao,et al.  Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5% , 2019, Nature Communications.

[22]  Donghui Wei,et al.  Air-Stable, Lead-Free Zero-Dimensional Mixed Bismuth-Antimony Perovskite Single Crystals with Ultra-broadband Emission. , 2019, Angewandte Chemie.

[23]  J. Zhong,et al.  Grinding Synthesis of APbX3 (A = MA, FA, Cs; X = Cl, Br, I) Perovskite Nanocrystals. , 2019, ACS applied materials & interfaces.

[24]  S. Seok,et al.  Intrinsic Instability of Inorganic–Organic Hybrid Halide Perovskite Materials , 2019, Advanced materials.

[25]  G. D. da Rocha,et al.  Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles , 2019, Scientific Reports.

[26]  Jiang Tang,et al.  Dimensionality Controlling of Cs3Sb2I9 for Efficient All‐Inorganic Planar Thin Film Solar Cells by HCl‐Assisted Solution Method , 2019, Advanced Optical Materials.

[27]  William W. Yu,et al.  Bright Orange Electroluminescence from Lead-Free Two-Dimensional Perovskites , 2018, ACS Energy Letters.

[28]  J. Caro,et al.  Ultra-Tuning of the Aperture Size in Stiffened ZIF-8_Cm Frameworks with Mixed-Linker Strategy for Enhanced CO2 /CH4 Separation. , 2018, Angewandte Chemie.

[29]  Guangda Niu,et al.  Efficient and stable emission of warm-white light from lead-free halide double perovskites , 2018, Nature.

[30]  Yuchen Liu,et al.  Photostability and Photodegradation Processes in Colloidal CsPbI3 Perovskite Quantum Dots. , 2018, ACS applied materials & interfaces.

[31]  Y. Lou,et al.  All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence. , 2018, Chemical communications.

[32]  J. Kido,et al.  Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices , 2018, Nature Photonics.

[33]  Yizheng Jin,et al.  Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures , 2018, Nature.

[34]  L. Quan,et al.  Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent , 2018, Nature.

[35]  H. Hosono,et al.  Lead‐Free Highly Efficient Blue‐Emitting Cs3Cu2I5 with 0D Electronic Structure , 2018, Advanced materials.

[36]  Guangda Niu,et al.  Surface Passivation of Bismuth-Based Perovskite Variant Quantum Dots To Achieve Efficient Blue Emission. , 2018, Nano letters.

[37]  Haizheng Zhong,et al.  Efficient Light-Emitting Diodes Based on in Situ Fabricated FAPbBr3 Nanocrystals: The Enhancing Role of the Ligand-Assisted Reprecipitation Process. , 2018, ACS nano.

[38]  G. Rainò,et al.  Highly Emissive Self‐Trapped Excitons in Fully Inorganic Zero‐Dimensional Tin Halides , 2018, Angewandte Chemie.

[39]  Shuai Chang,et al.  In Situ Fabricated Perovskite Nanocrystals: A Revolution in Optical Materials , 2018, Advanced Optical Materials.

[40]  Weidong Song,et al.  Synthesis of Lead-free CsGeI3 Perovskite Colloidal Nanocrystals and Electron Beam-induced Transformations. , 2018, Chemistry, an Asian journal.

[41]  Y. Bekenstein,et al.  The Making and Breaking of Lead-Free Double Perovskite Nanocrystals of Cesium Silver-Bismuth Halide Compositions. , 2018, Nano letters.

[42]  M. Kovalenko,et al.  Low-Cost Synthesis of Highly Luminescent Colloidal Lead Halide Perovskite Nanocrystals by Wet Ball Milling , 2018, ACS applied nano materials.

[43]  X. Hou,et al.  Bilateral Interface Engineering toward Efficient 2D–3D Bulk Heterojunction Tin Halide Lead-Free Perovskite Solar Cells , 2018 .

[44]  Q. Akkerman,et al.  Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals , 2018, Nature Materials.

[45]  A. Samanta,et al.  Photoluminescence of Zero-Dimensional Perovskites and Perovskite-Related Materials. , 2018, The journal of physical chemistry letters.

[46]  Wenge Yang,et al.  High-Pressure Band-Gap Engineering in Lead-Free Cs2 AgBiBr6 Double Perovskite. , 2017, Angewandte Chemie.

[47]  Barry P. Rand,et al.  Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor , 2017, Nature Photonics.

[48]  Maksym V. Kovalenko,et al.  Properties and potential optoelectronic applications of lead halide perovskite nanocrystals , 2017, Science.

[49]  Bin Yang,et al.  Lead-Free, Air-Stable All-Inorganic Cesium Bismuth Halide Perovskite Nanocrystals. , 2017, Angewandte Chemie.

[50]  Matthew C. Beard,et al.  Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells , 2017, Science Advances.

[51]  U. Farooq,et al.  High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots. , 2017, ACS nano.

[52]  Michael Grätzel,et al.  Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells , 2017, Science Advances.

[53]  Weiqiao Deng,et al.  (C6H5C2H4NH3)2GeI4: A Layered Two-Dimensional Perovskite with Potential for Photovoltaic Applications. , 2017, The journal of physical chemistry letters.

[54]  Z. Deng,et al.  Controlled Synthesis of Lead-Free Cesium Tin Halide Perovskite Cubic Nanocages with High Stability , 2017 .

[55]  M. Kovalenko,et al.  High‐Temperature Photoluminescence of CsPbX3 (X = Cl, Br, I) Nanocrystals , 2017 .

[56]  Haolei Zhang,et al.  Solvent-Free Mechanosynthesis of Composition-Tunable Cesium Lead Halide Perovskite Quantum Dots. , 2017, The journal of physical chemistry letters.

[57]  Theo Siegrist,et al.  One-dimensional organic lead halide perovskites with efficient bluish white-light emission , 2017, Nature Communications.

[58]  M. Kanatzidis,et al.  Dynamic Stereochemical Activity of the Sn(2+) Lone Pair in Perovskite CsSnBr3. , 2016, Journal of the American Chemical Society.

[59]  Aslihan Babayigit,et al.  Toxicity of organometal halide perovskite solar cells. , 2016, Nature materials.

[60]  M. Grätzel,et al.  Lead-Free MA2CuCl(x)Br(4-x) Hybrid Perovskites. , 2016, Inorganic chemistry.

[61]  Edward H. Sargent,et al.  Planar-integrated single-crystalline perovskite photodetectors , 2015, Nature Communications.

[62]  Qingfeng Dong,et al.  Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination , 2015, Nature Photonics.

[63]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[64]  L. Deng,et al.  Controllable Transformation from Rhombohedral Cu1.8S Nanocrystals to Hexagonal CuS Clusters: Phase- and Composition-Dependent Plasmonic Properties , 2013 .

[65]  R. Sheldon Green solvents for sustainable organic synthesis: state of the art , 2005 .

[66]  S. Hull,et al.  Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides-II: ordered phases within the (AgX)x-(MX)1-x and (CuX)x-(MX)1-x (M = K, Rb and Cs; X = Cl, Br and I) systems , 2004 .

[67]  N. Mott,et al.  The lifetime of electrons, holes and excitons before self-trapping , 1977 .

[68]  Guangda Niu,et al.  All‐Inorganic Bismuth‐Based Perovskite Quantum Dots with Bright Blue Photoluminescence and Excellent Stability , 2018 .

[69]  Guangda Niu,et al.  Rare Earth Ion‐Doped CsPbBr3 Nanocrystals , 2018 .

[70]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[71]  Yong Qiu,et al.  Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells , 2014 .