Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination

[1]  Olivier Heudi,et al.  Biodistribution and Metabolism Studies of Lipid Nanoparticle–Formulated Internally [3H]-Labeled siRNA in Mice , 2014, Drug Metabolism and Disposition.

[2]  R. Dummer,et al.  Nano-particle vaccination combined with TLR-7 and -9 ligands triggers memory and effector CD8+ T-cell responses in melanoma patients , 2012, European journal of immunology.

[3]  J. Schlom,et al.  Therapeutic cancer vaccines: current status and moving forward. , 2012, Journal of the National Cancer Institute.

[4]  Y. Modis,et al.  Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity , 2012, Virology Journal.

[5]  C. Mandl,et al.  Vaccines for the twenty-first century society , 2011, Nature Reviews Immunology.

[6]  Martin F. Bachmann,et al.  Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns , 2010, Nature Reviews Immunology.

[7]  R. Coffman,et al.  Vaccine adjuvants: putting innate immunity to work. , 2010, Immunity.

[8]  R. Dummer,et al.  Memory and Effector CD8 T-cell Responses After Nanoparticle Vaccination of Melanoma Patients , 2010, Journal of immunotherapy.

[9]  B. Engelhardt,et al.  Immunobiology: Comprehensive analysis of lymph node stroma-expressed Ig superfamily members reveals redundant and nonredundant roles for ICAM-1, ICAM-2, and VCAM-1 in lymphocyte homing , 2012 .

[10]  F. Buonaguro,et al.  Virus-like particles as particulate vaccines. , 2010, Current HIV research.

[11]  M. Bachmann,et al.  Cutting Edge: Limited Specialization of Dendritic Cell Subsets for MHC Class II-Associated Presentation of Viral Particles , 2009, The Journal of Immunology.

[12]  A. Jegerlehner,et al.  Alveolar Macrophages and Lung Dendritic Cells Sense RNA and Drive Mucosal IgA Responses , 2009, The Journal of Immunology.

[13]  F. Batista,et al.  BCR-mediated uptake of antigen linked to TLR9 ligand stimulates B-cell proliferation and antigen-specific plasma cell formation. , 2009, Blood.

[14]  T. Kündig,et al.  Use of A‐type CpG oligodeoxynucleotides as an adjuvant in allergen‐specific immunotherapy in humans: a phase I/IIa clinical trial , 2009, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[15]  Martin F. Bachmann,et al.  The coming of age of virus-like particle vaccines , 2008, Biological chemistry.

[16]  Katrin Schwarz,et al.  Nanoparticles target distinct dendritic cell populations according to their size , 2008, European journal of immunology.

[17]  B. Livingston,et al.  Immunostimulatory DNA as a vaccine adjuvant , 2007, Expert review of vaccines.

[18]  S. Akira,et al.  Toll-like Receptors and Type I Interferons* , 2007, Journal of Biological Chemistry.

[19]  A. Landay,et al.  Impact of class A, B and C CpG‐oligodeoxynucleotides on in vitro activation of innate immune cells in human immunodeficiency virus‐1 infected individuals , 2007, Immunology.

[20]  R. Steinman,et al.  Differential Antigen Processing by Dendritic Cell Subsets in Vivo , 2007, Science.

[21]  D. Speiser,et al.  Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. , 2005, The Journal of clinical investigation.

[22]  K. Schwarz,et al.  Efficient homologous prime‐boost strategies for T cell vaccination based on virus‐like particles , 2005, European journal of immunology.

[23]  T. Storni,et al.  Loading of MHC Class I and II Presentation Pathways by Exogenous Antigens: A Quantitative In Vivo Comparison , 2004, The Journal of Immunology.

[24]  D. Klinman Immunotherapeutic uses of CpG oligodeoxynucleotides , 2004, Nature Reviews Immunology.

[25]  K. Schwarz,et al.  Nonmethylated CG Motifs Packaged into Virus-Like Particles Induce Protective Cytotoxic T Cell Responses in the Absence of Systemic Side Effects , 2004, The Journal of Immunology.

[26]  S. Henrickson,et al.  T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases , 2004, Nature.

[27]  P. Wingfield,et al.  Characterization of a Conformational Epitope on Hepatitis B Virus Core Antigen and Quasiequivalent Variations in Antibody Binding , 2003, Journal of Virology.

[28]  T. Giese,et al.  Activation with CpG-A and CpG-B Oligonucleotides Reveals Two Distinct Regulatory Pathways of Type I IFN Synthesis in Human Plasmacytoid Dendritic Cells 1 , 2003, The Journal of Immunology.

[29]  C. Bode,et al.  CpG DNA as a vaccine adjuvant , 2003, Expert review of vaccines.

[30]  D. Klinman CpG DNA as a vaccine adjuvant , 2003, Expert review of vaccines.

[31]  T. Giese,et al.  Quantitative Expression of Toll-Like Receptor 1–10 mRNA in Cellular Subsets of Human Peripheral Blood Mononuclear Cells and Sensitivity to CpG Oligodeoxynucleotides1 , 2002, The Journal of Immunology.

[32]  A. Jegerlehner,et al.  Critical Role for Activation of Antigen-Presenting Cells in Priming of Cytotoxic T Cell Responses After Vaccination with Virus-Like Particles1 , 2002, The Journal of Immunology.

[33]  N. Kadowaki,et al.  Subsets of Human Dendritic Cell Precursors Express Different Toll-like Receptors and Respond to Different Microbial Antigens , 2001, The Journal of experimental medicine.

[34]  S. Akira,et al.  Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  S. Akira,et al.  A Toll-like receptor recognizes bacterial DNA , 2000, Nature.

[36]  P. Pumpens,et al.  Mutilation of RNA phage Qβ virus‐like particles: from icosahedrons to rods , 2000, FEBS letters.

[37]  G. Hartmann,et al.  CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  L. Hültner,et al.  Immunostimulatory CpG-oligodeoxynucleotides cause extramedullary murine hemopoiesis. , 1999, Journal of immunology.

[39]  C. Harding,et al.  CpG Oligodeoxynucleotides Act as Adjuvants that Switch on T Helper 1 (Th1) Immunity , 1997, The Journal of experimental medicine.

[40]  G. Bishop,et al.  CpG motifs in bacterial DNA trigger direct B-cell activation , 1995, Nature.

[41]  R. A. Crowther,et al.  Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy , 1994, Cell.

[42]  D. Pisetsky,et al.  Induction of immune-mediated glomerulonephritis in normal mice immunized with bacterial DNA. , 1993, Clinical immunology and immunopathology.

[43]  Y. Cheng,et al.  Antisense oligonucleotides as therapeutic agents--is the bullet really magical? , 1993, Science.

[44]  A. Abbas,et al.  Cellular and Molecular Immunology , 1991 .

[45]  A. Steinberg,et al.  Theoretical and Experimental Approaches to Generalized Autoimmunity , 1990, Immunological reviews.

[46]  R. Belshe Vaccines for the Twenty-First Century , 1998 .

[47]  P. Pumpens,et al.  RNA phage Q beta coat protein as a carrier for foreign epitopes. , 1996, Intervirology.

[48]  P. Pumpens,et al.  RNA Phage Qβ Coat Protein as a Carrier for Foreign Epitopes , 1996 .