Artifacts caused by simplicial subdivision

We review schemes for dividing cubic cells into simplices (tetrahedra) for interpolating from sampled data to R/sup 3/, present visual and geometric artifacts generated in isosurfaces and volume renderings, and discuss how these artifacts relate to the filter kernels corresponding to the subdivision schemes.

[1]  Gregory M. Nielson,et al.  Computing the separating surface for segmented data , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[2]  P. Hanrahan,et al.  Area and volume coherence for efficient visualization of 3D scalar functions , 1990, VVS.

[3]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[4]  Kenneth Moreland,et al.  Tetrahedral projection using vertex shaders , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.

[5]  Michael P. Garrity Raytracing irregular volume data , 1990, VVS.

[6]  Gregory M. Nielson,et al.  On Marching Cubes , 2003, IEEE Trans. Vis. Comput. Graph..

[7]  Roger Crawfis,et al.  Efficient subdivision of finite-element datasets into consistent tetrahedra , 1997 .

[8]  Paul Ning,et al.  An evaluation of implicit surface tilers , 1993, IEEE Computer Graphics and Applications.

[9]  Thomas Ertl,et al.  A two-step approach for interactive pre-integrated volume rendering of unstructured grids , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.

[10]  P. Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, VVS.

[11]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[12]  Nelson L. Max,et al.  Sorting and hardware assisted rendering for volume visualization , 1994, VVS '94.

[13]  Thomas Theußl,et al.  Isosurfaces on Optimal Regular Samples , 2003, VisSym.

[14]  Gregory M. Nielson,et al.  Interval volume tetrahedrization , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[15]  Martin Kraus,et al.  Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[16]  Valerio Pascucci,et al.  Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.

[17]  Jules Bloomenthal,et al.  Polygonization of implicit surfaces , 1988, Comput. Aided Geom. Des..

[18]  H. Freudenthal Simplizialzerlegungen von Beschrankter Flachheit , 1942 .

[19]  B. Natarajan On generating topologically consistent isosurfaces from uniform samples , 1994, The Visual Computer.

[20]  Stefan Gnutzmann,et al.  Simplicial pivoting for mesh generation of implicity defined surfaces , 1991, Comput. Aided Geom. Des..

[21]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[22]  T. Moller,et al.  Design of accurate and smooth filters for function and derivative reconstruction , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[23]  Roger Crawfis,et al.  Efficient subdivision of finite-element datasets into consistent tetrahedra , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[24]  David C. Banks,et al.  Complex-valued contour meshing , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[25]  David S. Ebert,et al.  Projecting tetrahedra without rendering artifacts , 2004, IEEE Visualization 2004.

[26]  A.K. Krishnamurthy,et al.  Multidimensional digital signal processing , 1985, Proceedings of the IEEE.

[27]  Martin Kraus,et al.  Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000 .

[28]  Jack Snoeyink,et al.  Simplicial subdivisions and sampling artifacts , 2001, Proceedings Visualization, 2001. VIS '01..

[29]  Arie E. Kaufman,et al.  Multiresolution tetrahedral framework for visualizing regular volume data , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[30]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .