Artifacts caused by simplicial subdivision
暂无分享,去创建一个
[1] Gregory M. Nielson,et al. Computing the separating surface for segmented data , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).
[2] P. Hanrahan,et al. Area and volume coherence for efficient visualization of 3D scalar functions , 1990, VVS.
[3] William E. Lorensen,et al. Marching cubes: a high resolution 3D surface construction algorithm , 1996 .
[4] Kenneth Moreland,et al. Tetrahedral projection using vertex shaders , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.
[5] Michael P. Garrity. Raytracing irregular volume data , 1990, VVS.
[6] Gregory M. Nielson,et al. On Marching Cubes , 2003, IEEE Trans. Vis. Comput. Graph..
[7] Roger Crawfis,et al. Efficient subdivision of finite-element datasets into consistent tetrahedra , 1997 .
[8] Paul Ning,et al. An evaluation of implicit surface tilers , 1993, IEEE Computer Graphics and Applications.
[9] Thomas Ertl,et al. A two-step approach for interactive pre-integrated volume rendering of unstructured grids , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.
[10] P. Shirley,et al. A polygonal approximation to direct scalar volume rendering , 1990, VVS.
[11] Jack Snoeyink,et al. Computing contour trees in all dimensions , 2000, SODA '00.
[12] Nelson L. Max,et al. Sorting and hardware assisted rendering for volume visualization , 1994, VVS '94.
[13] Thomas Theußl,et al. Isosurfaces on Optimal Regular Samples , 2003, VisSym.
[14] Gregory M. Nielson,et al. Interval volume tetrahedrization , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).
[15] Martin Kraus,et al. Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).
[16] Valerio Pascucci,et al. Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.
[17] Jules Bloomenthal,et al. Polygonization of implicit surfaces , 1988, Comput. Aided Geom. Des..
[18] H. Freudenthal. Simplizialzerlegungen von Beschrankter Flachheit , 1942 .
[19] B. Natarajan. On generating topologically consistent isosurfaces from uniform samples , 1994, The Visual Computer.
[20] Stefan Gnutzmann,et al. Simplicial pivoting for mesh generation of implicity defined surfaces , 1991, Comput. Aided Geom. Des..
[21] William E. Lorensen,et al. Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.
[22] T. Moller,et al. Design of accurate and smooth filters for function and derivative reconstruction , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).
[23] Roger Crawfis,et al. Efficient subdivision of finite-element datasets into consistent tetrahedra , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).
[24] David C. Banks,et al. Complex-valued contour meshing , 1996, Proceedings of Seventh Annual IEEE Visualization '96.
[25] David S. Ebert,et al. Projecting tetrahedra without rendering artifacts , 2004, IEEE Visualization 2004.
[26] A.K. Krishnamurthy,et al. Multidimensional digital signal processing , 1985, Proceedings of the IEEE.
[27] Martin Kraus,et al. Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000 .
[28] Jack Snoeyink,et al. Simplicial subdivisions and sampling artifacts , 2001, Proceedings Visualization, 2001. VIS '01..
[29] Arie E. Kaufman,et al. Multiresolution tetrahedral framework for visualizing regular volume data , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).
[30] A. W. M. van den Enden,et al. Discrete Time Signal Processing , 1989 .