Generalized Turán problems for even cycles

Given a graph $H$ and a set of graphs $\mathcal F$, let $ex(n,H,\mathcal F)$ denote the maximum possible number of copies of $H$ in an $\mathcal F$-free graph on $n$ vertices. We investigate $ex(n,H,\mathcal F)$ when $H$ and members of $\mathcal F$ are cycles. We determine the order of magnitude of $ex(n, C_{2l}, C_{2k})$ for any $l , k \ge 2$. Moreover, we determine $ex(n, C_{4}, C_{2k})$ asymptotically for all $k$. Solymosi and Wong proved that if Erd\H{o}s's Girth Conjecture holds, then for all $l \ge 3$, we have $ex(n, C_{2l}, \{ C_3, C_4, \ldots, C_{2l-2}\}) = \Theta(n^{2l/(l-1)})$. We prove that their result is sharp in the sense that if any other even cycle is also forbidden then the order of magnitude is smaller. More precisely, for any $k > l$, we have $$ex(n,C_{2l},\{C_3,C_4, \dots, C_{2l-2}\}\cup \{C_{2k}\})=\Theta(n^2).$$ We also determine the asymptotics of the number of $C_4$'s and the order of magnitude of the number of $C_6$'s for any given set of forbidden cycles.

[1]  Noga Alon,et al.  The Moore Bound for Irregular Graphs , 2002, Graphs Comb..

[2]  Balázs Keszegh,et al.  On the Number of Cycles in a Graph with Restricted Cycle Lengths , 2016, SIAM J. Discret. Math..

[3]  Peter Volkmann,et al.  Über ein Problem von Fenyő , 1984 .

[4]  Vladimir Nikiforov,et al.  A spectral condition for odd cycles in graphs , 2007, 0707.4499.

[5]  J. Sheehan,et al.  On the number of complete subgraphs contained in certain graphs , 1981, J. Comb. Theory, Ser. B.

[6]  Ervin Györi,et al.  Hypergraphs with No Cycle of a Given Length , 2012, Combinatorics, Probability and Computing.

[7]  Hao Li,et al.  The Maximum Number of Triangles in C2k+1-Free Graphs , 2012, Combinatorics, Probability and Computing.

[8]  W. G. Brown On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.

[9]  Christopher M. Hartman Extremal problems in graph theory , 1997 .

[10]  Ervin Györi,et al.  The maximum number of Pℓ copies in Pk-free graphs , 2019, Discret. Math. Theor. Comput. Sci..

[11]  Béla Bollobás,et al.  Extremal problems in graph theory , 1977, J. Graph Theory.

[12]  Alex Scott,et al.  Maximising the number of cycles in graphs with forbidden subgraphs , 2019, J. Comb. Theory, Ser. B.

[13]  P. Hall On Representatives of Subsets , 1935 .

[14]  Noga Alon,et al.  Many T copies in H-free graphs , 2015, Electron. Notes Discret. Math..

[15]  Jacques Verstraëte Extremal problems for cycles in graphs , 2016 .

[16]  József Solymosi,et al.  Cycles in graphs of fixed girth with large size , 2016, Eur. J. Comb..

[17]  Andrzej Grzesik,et al.  On the maximum number of odd cycles in graphs without smaller odd cycles , 2022, J. Graph Theory.

[18]  Zolt'an Furedi,et al.  On 3-uniform hypergraphs without a cycle of a given length , 2014, 1412.8083.

[19]  Dániel Gerbner,et al.  Extremal Results for Berge Hypergraphs , 2015, SIAM J. Discret. Math..

[20]  C. T. Benson Minimal Regular Graphs of Girths Eight and Twelve , 1966, Canadian Journal of Mathematics.

[21]  Cory Palmer,et al.  Counting copies of a fixed subgraph in F-free graphs , 2018, Eur. J. Comb..

[22]  P. Erdös,et al.  On the structure of linear graphs , 1946 .

[23]  Miklós Simonovits,et al.  Paul Erdős' Influence on Extremal Graph Theory , 2013, The Mathematics of Paul Erdős II.

[24]  P. Erdos,et al.  On maximal paths and circuits of graphs , 1959 .

[25]  Béla Bollobás,et al.  Pentagons vs. triangles , 2008, Discret. Math..

[26]  Ervin Györi,et al.  3-uniform hypergraphs avoiding a given odd cycle , 2012, Comb..

[27]  Ervin Györi,et al.  A note on the maximum number of triangles in a C5-free graph , 2017, Electron. Notes Discret. Math..

[28]  M. Simonovits,et al.  Cycles of even length in graphs , 1974 .

[29]  M. Simonovits,et al.  The History of Degenerate (Bipartite) Extremal Graph Problems , 2013, 1306.5167.

[30]  Vojtěch Rödl,et al.  On a probabilistic graph-theoretical method , 1978 .

[31]  Benny Sudakov,et al.  Cycle lengths in sparse graphs , 2007, Comb..

[32]  Jie Ma,et al.  Some sharp results on the generalized Turán numbers , 2018, Eur. J. Comb..

[33]  Felix Lazebnik,et al.  Polarities and 2k-cycle-free graphs , 1999, Discret. Math..

[34]  Rephael Wenger,et al.  Extremal graphs with no C4's, C6's, or C10's , 1991, J. Comb. Theory, Ser. B.

[35]  Andrzej Grzesik On the maximum number of five-cycles in a triangle-free graph , 2012, J. Comb. Theory, Ser. B.

[36]  David Ellis,et al.  On Regular Hypergraphs of High Girth , 2013, Electron. J. Comb..

[37]  Asaf Shapira,et al.  A Generalized Turan Problem and its Applications , 2018, Electron. Colloquium Comput. Complex..

[38]  Vladimir Nikiforov,et al.  The spectral radius of graphs without paths and cycles of specified length , 2009, 0903.5351.

[39]  I. Reiman Über ein Problem von K. Zarankiewicz , 1958 .

[40]  D'aniel Gerbner,et al.  Generalized Turán problems for disjoint copies of graphs , 2017, Discret. Math..

[41]  Jan Hladký,et al.  On the number of pentagons in triangle-free graphs , 2013, J. Comb. Theory, Ser. A.

[42]  P. Erdös On an extremal problem in graph theory , 1970 .