Long-term feeder-free culture of human pancreatic progenitors on fibronectin or matrix-free polymer potentiates β cell differentiation

[1]  I. Amit,et al.  A 3D system to model human pancreas development and its reference single-cell transcriptome atlas identify signaling pathways required for progenitor expansion , 2021, Nature Communications.

[2]  Michael T. Garcia,et al.  Single-cell resolution analysis of the human pancreatic ductal progenitor cell niche , 2020, Proceedings of the National Academy of Sciences.

[3]  Jeffrey R. Millman,et al.  Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells , 2020, Nature Biotechnology.

[4]  P. Serup,et al.  Mechanosignalling via integrins directs fate decisions of pancreatic progenitors , 2018, Nature.

[5]  Ingrid Poernbacher,et al.  Epithelial cells release adenosine to promote local TNF production in response to polarity disruption , 2018, Nature Communications.

[6]  M. McCarthy,et al.  Understanding human fetal pancreas development using subpopulation sorting, RNA sequencing and single-cell profiling , 2018, Development.

[7]  A. Trusina,et al.  Stochastic priming and spatial cues orchestrate heterogeneous clonal contribution to mouse pancreas organogenesis , 2017, Nature Communications.

[8]  K. Kissa,et al.  TNF signaling and macrophages govern fin regeneration in zebrafish larvae , 2017, Cell Death & Disease.

[9]  L. Stanton,et al.  Long-Term Culture of Self-renewing Pancreatic Progenitors Derived from Human Pluripotent Stem Cells , 2017, Stem cell reports.

[10]  R. Scharfmann,et al.  Efficient Generation of Glucose-Responsive Beta Cells from Isolated GP2+ Human Pancreatic Progenitors. , 2017, Cell reports.

[11]  Samuel L. Wolock,et al.  A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. , 2016, Cell systems.

[12]  Sheng Ding,et al.  Human pancreatic beta-like cells converted from fibroblasts , 2016, Nature Communications.

[13]  Gordon Keller,et al.  Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell– and patient-derived tumor organoids , 2015, Nature Medicine.

[14]  Dave T. Gerrard,et al.  Human pancreas development , 2015, Development.

[15]  E. Stanley,et al.  Efficient Generation of NKX6-1+ Pancreatic Progenitors from Multiple Human Pluripotent Stem Cell Lines , 2015, Stem cell reports.

[16]  D. Melton,et al.  Generation of Functional Human Pancreatic β Cells In Vitro , 2014, Cell.

[17]  M. Sander,et al.  Postnatal β-Cell Proliferation and Mass Expansion Is Dependent on the Transcription Factor Nkx6.1 , 2014, Diabetes.

[18]  James D. Johnson,et al.  Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells , 2014, Nature Biotechnology.

[19]  Manuel Figueiredo-Larsen,et al.  In vitro pancreas organogenesis from dispersed mouse embryonic progenitors. , 2014, Journal of visualized experiments : JoVE.

[20]  A. Ranga,et al.  Artificial three-dimensional niches deconstruct pancreas development in vitro , 2013, Development.

[21]  T. Hearn,et al.  Development of the Human Pancreas From Foregut to Endocrine Commitment , 2013, Diabetes.

[22]  M. Weiss,et al.  Self-renewing endodermal progenitor lines generated from human pluripotent stem cells. , 2012, Cell stem cell.

[23]  G. Kollias,et al.  Intestinal epithelial cells as producers but not targets of chronic TNF suffice to cause murine Crohn-like pathology , 2011, Proceedings of the National Academy of Sciences.

[24]  M. Sander,et al.  Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors. , 2010, Developmental cell.

[25]  I. Artner,et al.  FGF2 Specifies hESC‐Derived Definitive Endoderm into Foregut/Midgut Cell Lineages in a Concentration‐Dependent Manner , 2009, Stem cells.

[26]  J. Brickman,et al.  Anterior definitive endoderm from ESCs reveals a role for FGF signaling. , 2008, Cell stem cell.

[27]  E. Kroon,et al.  Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo , 2008, Nature Biotechnology.

[28]  D. Melton,et al.  Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. , 2002, Development.

[29]  L. Orci,et al.  TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro. , 1994, Development.

[30]  C. McClain,et al.  Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy. , 1992, The American journal of physiology.

[31]  J. K. Lee,et al.  Expression of cell type-specific markers during pancreatic development in the mouse: implications for pancreatic cell lineages , 1987, Cell and Tissue Research.

[32]  A. Grapin-Botton,et al.  Recapitulating and Deciphering Human Pancreas Development From Human Pluripotent Stem Cells in a Dish. , 2018, Current topics in developmental biology.

[33]  Gopika G. Nair,et al.  Controlled induction of human pancreatic progenitors produces functional beta‐like cells in vitro , 2015, The EMBO journal.

[34]  P. Schwartz,et al.  Human Pluripotent Stem Cells , 2011, Methods in Molecular Biology.