Visual contribution to human standing balance during support surface tilts

Highlights • Contributions of visual position and velocity cues to standing balance are analyzed.• Both visual cues reduce sway responses to support surface tilt and sway variability.• Model simulations are used for data interpretation and data reproduction.• Visual cues improve disturbance estimates by reduction of estimation thresholds.• Reduction of noise by visual cues appears to be an instrumental factor.

[1]  Shterenshis Mv Origins of clinical neurology: M.H. Romberg and his 'Lehrbuch der Nervenkrankheiten des Menschen' (1840-1846). , 1998 .

[2]  David W. Franklin,et al.  Computational Mechanisms of Sensorimotor Control , 2011, Neuron.

[3]  Frans C. T. van der Helm,et al.  An adaptive model of sensory integration in a dynamic environment applied to human stance control , 2001, Biological Cybernetics.

[4]  J. McIntyre,et al.  Servo Hypotheses for the Biological Control of Movement. , 1993, Journal of motor behavior.

[5]  Georg Hettich,et al.  Human hip-ankle coordination emerging from multisensory feedback control. , 2014, Human movement science.

[6]  T. Mergner,et al.  Abnormal resonance behavior of the postural control loop in Parkinson’s disease , 2004, Experimental Brain Research.

[7]  W. Bialek,et al.  A sensory source for motor variation , 2005, Nature.

[8]  R E Poppele,et al.  Representation of multiple kinematic parameters of the cat hindlimb in spinocerebellar activity. , 1997, Journal of neurophysiology.

[9]  Herman van der Kooij,et al.  Non-linear stimulus-response behavior of the human stance control system is predicted by optimization of a system with sensory and motor noise , 2010, Journal of Computational Neuroscience.

[10]  P. Merton Speculations on the Servo‐Control of Movement , 2008 .

[11]  A. Kuo An optimal state estimation model of sensory integration in human postural balance , 2005, Journal of neural engineering.

[12]  Anne C. Sittig,et al.  The precision of proprioceptive position sense , 1998, Experimental Brain Research.

[13]  A. Bronstein,et al.  Suppression of visually evoked postural responses , 2004, Experimental Brain Research.

[14]  V. Dietz,et al.  Human stance on a sinusoidally translating platform: balance control by feedforward and feedback mechanisms , 2004, Experimental Brain Research.

[15]  A. Edwards,et al.  Body sway and vision. , 1946, Journal of experimental psychology.

[16]  T. Mergner,et al.  Multisensory control of human upright stance , 2006, Experimental Brain Research.

[17]  Boualem Boashash,et al.  The bootstrap and its application in signal processing , 1998, IEEE Signal Process. Mag..

[18]  T Mergner,et al.  Visual contributions to human self-motion perception during horizontal body rotation. , 2000, Archives italiennes de biologie.

[19]  C Maurer,et al.  A multisensory posture control model of human upright stance. , 2003, Progress in brain research.

[20]  T. Mergner,et al.  A cognitive intersensory interaction mechanism in human postural control , 2006, Experimental Brain Research.

[21]  L. R. Young,et al.  Influence of combined visual and vestibular cues on human perception and control of horizontal rotation , 2004, Experimental Brain Research.

[22]  M. Latash,et al.  Joint stiffness: Myth or reality? , 1993 .

[23]  A Straube,et al.  Visual stabilization of posture. Physiological stimulus characteristics and clinical aspects. , 1984, Brain : a journal of neurology.

[24]  Konrad P. Körding,et al.  Self versus Environment Motion in Postural Control , 2010, PLoS Comput. Biol..

[25]  Thomas Mergner,et al.  Modeling sensorimotor control of human upright stance. , 2007, Progress in brain research.

[26]  Tim Kiemel,et al.  Navigating sensory conflict in dynamic environments using adaptive state estimation , 2011, Biological Cybernetics.

[27]  Daniel Vélez Día,et al.  Biomechanics and Motor Control of Human Movement , 2013 .

[28]  R.J. Peterka,et al.  Simplifying the complexities of maintaining balance , 2003, IEEE Engineering in Medicine and Biology Magazine.

[29]  A. Bronstein,et al.  Influence of action and expectation on visual control of posture. , 2001, Brain research. Cognitive brain research.

[30]  Frans C. T. van der Helm,et al.  Comparison of different methods to identify and quantify balance control , 2005, Journal of Neuroscience Methods.

[31]  M. Bach,et al.  Sehschärfebestimmung nach Europäischer Norm: wissenschaftliche Grundlagen und Möglichkeiten der automatischen Messung , 1998 .

[32]  T. Mergner,et al.  Contribution of visual velocity and displacement cues to human balancing of support surface tilt , 2013, Experimental Brain Research.

[33]  L. Selen,et al.  Impedance Control Reduces Instability That Arises from Motor Noise , 2009, The Journal of Neuroscience.

[34]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[35]  THOMAS A. CROFT Failure of Visual Estimation of Motion under Strobe , 1971, Nature.

[36]  M. H. Romberg Lehrbuch der Nervenkrankheiten des Menschen , 1857 .

[37]  Thomas Mergner,et al.  Posture Control in Vestibular‐Loss Patients , 2009, Annals of the New York Academy of Sciences.

[38]  T. Mergner,et al.  Human perception of horizontal trunk and head rotation in space during vestibular and neck stimulation , 2004, Experimental Brain Research.

[39]  J. Crémieux,et al.  Lateral orientation and stabilization of human stance: static versus dynamic visual cues , 2004, Experimental Brain Research.

[40]  Leonard A. Rozendaal,et al.  Stability of bipedal stance: the contribution of cocontraction and spindle feedback , 2003, Biological Cybernetics.

[41]  Mergner Thomas Postural Control by Disturbance Estimation and Compensation Through Long-Loop Responses , 2012 .

[42]  Vincenzo Perciavalle,et al.  Processing of Limb Kinematics in the Interpositus Nucleus , 2010, The Cerebellum.

[43]  Frans C T van der Helm,et al.  Comparison of different methods to identify and quantify balance control. , 2005, Journal of neuroscience methods.

[44]  R. van Emmerik,et al.  On the Functional Aspects of Variability in Postural Control , 2002, Exercise and sport sciences reviews.

[45]  F. Horak,et al.  Postural Orientation and Equilibrium , 2011 .

[46]  W. D. T. Davies,et al.  System identification for self-adaptive control , 1970 .

[47]  J. Henriksson Human movement science , 2012, Acta physiologica.

[48]  T. Mergner,et al.  Human stance control beyond steady state response and inverted pendulum simplification , 2008, Experimental Brain Research.

[49]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  Daniel M. Wolpert,et al.  Making smooth moves , 2022 .

[51]  Thomas Mergner,et al.  A neurological view on reactive human stance control , 2010, Annu. Rev. Control..

[52]  Zoubin Ghahramani,et al.  Computational principles of movement neuroscience , 2000, Nature Neuroscience.

[53]  R. Fitzpatrick,et al.  Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. , 1994, The Journal of physiology.

[54]  N. Hogan Adaptive control of mechanical impedance by coactivation of antagonist muscles , 1984 .

[55]  R. Peterka,et al.  A new interpretation of spontaneous sway measures based on a simple model of human postural control. , 2005, Journal of neurophysiology.

[56]  Richard E.A. van Emmerik,et al.  On the functional aspects of variability in postural control. , 2002 .

[57]  Tim Kiemel,et al.  Modeling the Dynamics of Sensory Reweighting , 2006, Biological Cybernetics.

[58]  Robert J. Peterka,et al.  Postural control model interpretation of stabilogram diffusion analysis , 2000, Biological Cybernetics.

[59]  Thomas Mergner,et al.  Vestibular humanoid postural control , 2009, Journal of Physiology-Paris.

[60]  Marco Schieppati,et al.  Head stabilization on a continuously oscillating platform: the effect of a proprioceptive disturbance on the balancing strategy , 2005, Experimental Brain Research.

[61]  R. Peterka Sensorimotor integration in human postural control. , 2002, Journal of neurophysiology.

[62]  A. Berthoz,et al.  Visual contribution to rapid motor responses during postural control , 1978, Brain Research.

[63]  Roger Bartlett,et al.  Movement Systems as Dynamical Systems , 2003, Sports medicine.