The Cellosaurus, a Cell-Line Knowledge Resource.

The Cellosaurus is a knowledge resource on cell lines. It aims to describe all cell lines used in biomedical research. Its scope encompasses both vertebrates and invertebrates. Currently, information for >100,000 cell lines is provided. For each cell line, it provides a wealth of information, cross-references, and literature citations. The Cellosaurus is available on the ExPASy server (https://web.expasy.org/cellosaurus/) and can be downloaded in a variety of formats. Among its many uses, the Cellosaurus is a key resource to help researchers identify potentially contaminated/misidentified cell lines, thus contributing to improving the quality of research in the life sciences.

[1]  A. Plant,et al.  Standards for Cell Line Authentication and Beyond , 2016, PLoS biology.

[2]  Jeanne F. Loring,et al.  A call for standardized naming and reporting of human ESC and iPSC lines. , 2011, Cell stem cell.

[3]  J A Thomson,et al.  Short tandem repeat profiling provides an international reference standard for human cell lines , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Simon Jupp,et al.  Comparison, alignment, and synchronization of cell line information between CLO and EFO , 2017, BMC Bioinformatics.

[5]  Mingming Jia,et al.  COSMIC: somatic cancer genetics at high-resolution , 2016, Nucleic Acids Res..

[6]  Susanne Holtze,et al.  Rewinding the process of mammalian extinction. , 2016, Zoo biology.

[7]  K. Sirotkin,et al.  The interactive online SKY/M‐FISH & CGH Database and the Entrez Cancer Chromosomes search database: Linkage of chromosomal aberrations with the genome sequence , 2005, Genes, chromosomes & cancer.

[8]  Yue Liu,et al.  CLO: The cell line ontology , 2014, Journal of Biomedical Semantics.

[9]  Lucy E. J. Lee,et al.  Invitromatics, invitrome, and invitroomics: introduction of three new terms for in vitro biology and illustration of their use with the cell lines from rainbow trout , 2017, In Vitro Cellular & Developmental Biology - Animal.

[10]  Peter J. Park,et al.  The 4D Nucleome Project , 2017 .

[11]  Weisong Liu,et al.  The Rat Genome Database 2015: genomic, phenotypic and environmental variations and disease , 2014, Nucleic Acids Res..

[12]  Robert Petryszak,et al.  ArrayExpress update—simplifying data submissions , 2014, Nucleic Acids Res..

[13]  M. Baker Reproducibility crisis: Blame it on the antibodies , 2015, Nature.

[14]  Steven J. Marygold,et al.  Using FlyBase, a Database of Drosophila Genes and Genomes. , 2016, Methods in molecular biology.

[15]  Antje Chang,et al.  The BRENDA Tissue Ontology (BTO): the first all-integrating ontology of all organisms for enzyme sources , 2010, Nucleic Acids Res..

[16]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[17]  Benjamin M. Good,et al.  Wikidata as a semantic framework for the Gene Wiki initiative , 2015, bioRxiv.

[18]  Vassilios Ioannidis,et al.  ExPASy: SIB bioinformatics resource portal , 2012, Nucleic Acids Res..

[19]  L. Ciaccia,et al.  The Immortal Life of Henrietta Lacks , 2010, The Yale Journal of Biology and Medicine.

[20]  Christoph Steinbeck,et al.  MetaboLights: An Open‐Access Database Repository for Metabolomics Data , 2016, Current protocols in bioinformatics.

[21]  Yuh-Shan Jou,et al.  IGRhCellID: integrated genomic resources of human cell lines for identification , 2010, Nucleic Acids Res..

[22]  Judith A. Blake,et al.  Unification of multi-species vertebrate anatomy ontologies for comparative biology in Uberon , 2014, Journal of Biomedical Semantics.

[23]  American Type Culture Collection Standards Development Orga ASN-0002 Cell line misidentification: the beginning of the end , 2010, Nature Reviews Cancer.

[24]  C. Milstein,et al.  The hybridoma revolution: an offshoot of basic research. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[25]  A proposed method for designating avian cell lines and transplantable tumours. , 1979, Avian pathology : journal of the W.V.P.A.

[26]  Zhiyong Lu,et al.  Database resources of the National Center for Biotechnology Information , 2010, Nucleic Acids Res..

[27]  Naveen K. Chilamkurti,et al.  Colorectal cancer atlas: An integrative resource for genomic and proteomic annotations from colorectal cancer cell lines and tissues , 2015, Nucleic Acids Res..

[28]  Sridhar Ramaswamy,et al.  Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells , 2012, Nucleic Acids Res..

[29]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[30]  David S. Wishart,et al.  DrugBank 4.0: shedding new light on drug metabolism , 2013, Nucleic Acids Res..

[31]  Mariana L. Neves,et al.  CellFinder: a cell data repository , 2013, Nucleic Acids Res..

[32]  Helen E. Parkinson,et al.  The human-induced pluripotent stem cell initiative—data resources for cellular genetics , 2016, Nucleic Acids Res..

[33]  Yiling Lu,et al.  Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays. , 2017, Cancer cell.

[34]  George Papadatos,et al.  The ChEMBL database in 2017 , 2016, Nucleic Acids Res..

[35]  D. Solter,et al.  From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research , 2006, Nature Reviews Genetics.

[36]  J. Michael Cherry,et al.  The Encyclopedia of DNA elements (ENCODE): data portal update , 2017, Nucleic Acids Res..

[37]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[38]  W. Nelson-Rees,et al.  Banded Marker Chromosomes as Indicators of Intraspecies Cellular Contamination , 1974, Science.

[39]  Paolo Romano,et al.  Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines , 2008, Nucleic Acids Res..

[40]  Anna Zhukova,et al.  Modeling sample variables with an Experimental Factor Ontology , 2010, Bioinform..

[41]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[42]  S. Gartler,et al.  Apparent HeLa Cell Contamination of Human Heteroploid Cell Lines , 1968, Nature.

[43]  Steven G E Marsh,et al.  The IPD-IMGT/HLA Database - New developments in reporting HLA variation. , 2016, Human immunology.

[44]  David Robinson,et al.  Research resources: curating the new eagle-i discovery system , 2012, Database J. Biol. Databases Curation.

[45]  Marco Brandizi,et al.  Updates to BioSamples database at European Bioinformatics Institute , 2014, Nucleic Acids Res..

[46]  Amos Bairoch,et al.  A Standard Nomenclature for Referencing and Authentication of Pluripotent Stem Cells , 2018, Stem cell reports.

[47]  David N. Kennedy,et al.  The Resource Identification Initiative: A cultural shift in publishing , 2015, Neuroinformatics.

[48]  Sherri de Coronado,et al.  NCI Thesaurus: A semantic model integrating cancer-related clinical and molecular information , 2007, J. Biomed. Informatics.

[49]  James A. Thomson,et al.  Match criteria for human cell line authentication: Where do we draw the line? , 2013, International journal of cancer.

[50]  K. Kohn,et al.  CellMiner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. , 2012, Cancer research.

[51]  M. Pešić,et al.  Understanding Cancer Drug Resistance by Developing and Studying Resistant Cell Line Models. , 2016, Current cancer drug targets.

[52]  Elspeth A. Bruford,et al.  Genenames.org: the HGNC resources in 2015 , 2014, Nucleic Acids Res..

[53]  Amos Bairoch,et al.  Annotation of functional impact of voltage‐gated sodium channel mutations , 2017, Human mutation.

[54]  Weiping Zhang,et al.  hPSCreg—the human pluripotent stem cell registry , 2015, Nucleic Acids Res..

[55]  Vasileios Stathias,et al.  Data Portal for the Library of Integrated Network-based Cellular Signatures (LINCS) program: integrated access to diverse large-scale cellular perturbation response data , 2017, Nucleic Acids Res..

[56]  Dawn L. Duval,et al.  Polymerase chain reaction–based species verification and microsatellite analysis for canine cell line validation , 2011, Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc.

[57]  Ying Zhang,et al.  The neXtProt knowledgebase on human proteins: current status , 2014, Nucleic Acids Res..

[58]  E. Shelton,et al.  Production of Malignancy in Vitro. IV. The Mouse Fibroblast Cultures and Changes Seen in the Living Cells , 1943 .

[59]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[60]  M. Sadar,et al.  Cell lines used in prostate cancer research: a compendium of old and new lines--part 1. , 2005, The Journal of urology.

[61]  Judith A. Blake,et al.  Mouse Genome Informatics (MGI): reflecting on 25 years , 2015, Mammalian Genome.

[62]  Christoph Steinbeck,et al.  ChEBI in 2016: Improved services and an expanding collection of metabolites , 2015, Nucleic Acids Res..