Predicting metals sensed by ArsR‐SmtB repressors: allosteric interference by a non‐effector metal

Many bacterial genomes encode multiple metal‐sensing ArsR‐SmtB transcriptional repressors. There is interest in understanding and predicting their metal specificities. Here we analyse two arsR‐smtB genes, ydeT and yozA (now aseR and czrA) from Bacillus subtilis. Purified AseR and CzrA formed complexes in gel‐retardation and fluorescence‐anisotropy assays with fragments of promoters that were derepressed in ΔaseR and ΔczrA cells. Candidate (i) partly thiolate, α3‐helix (for AseR) and (ii) tetrahedral, non‐thiolate, α5‐helix (for CzrA) metal binding sites were predicted then tested in vitro and/or in vivo. The precedents are for such sites to sense arsenite/antimonite (α3) and zinc (α5). This correlated with the respective metal inducers of AseR and CzrA repressed promoters in B. subtilis and matched the metals that impaired formation of protein–DNA complexes in vitro. The putative sensory sites of 1024 ArsR‐SmtB homologues are reported. Although AseR did not sense zinc in vivo, it bound zinc in vitro exploiting α3 thiols, but AseR DNA binding was not impaired by zinc. If selectivity relies on discriminatory triggering of allostery not just selective metal binding, then tight non‐effector metal complexes could theoretically inhibit metal sensing. AseR remained arsenite‐sensitive in equimolar zinc, while CzrA remained zinc‐sensitive in equimolar arsenite in vitro. However, cupric ions did not impair CzrA–DNA complex formation but did inhibit zinc‐mediated allostery in vitro and prevent zinc binding. Access to copper must be controlled in vivo to avoid formation of cupric CzrA.

[1]  D. Giedroc,et al.  A Nickel-Cobalt-sensing ArsR-SmtB Family Repressor , 2002, The Journal of Biological Chemistry.

[2]  S. Silver,et al.  Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258 , 1991, Journal of bacteriology.

[3]  J. Helmann,et al.  Bacillus subtilis CPx-type ATPases: Characterization of Cd, Zn, Co and Cu efflux systems , 2003, Biometals.

[4]  J. Helmann,et al.  Metal ion homeostasis in Bacillus subtilis. , 2005, Current opinion in microbiology.

[5]  N. Robinson,et al.  Zn2+-sensing by the cyanobacterial metallothionein repressor SmtB: different motifs mediate metal-induced protein-DNA dissociation. , 1996, Nucleic acids research.

[6]  I. Bertini,et al.  Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis. , 2003, Biochemistry.

[7]  R. A. Scott,et al.  The Role of Arsenic-Thiol Interactions in Metalloregulation of the ars Operon (*) , 1996, The Journal of Biological Chemistry.

[8]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[9]  J. Wu,et al.  The ArsR protein is a trans‐acting regulatory protein , 1991, Molecular microbiology.

[10]  T. A. Krulwich,et al.  An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+ , 2002, Molecular microbiology.

[11]  J. Helmann,et al.  The global transcriptional response of Bacillus subtilis to manganese involves the MntR, Fur, TnrA and σB regulons , 2003, Molecular microbiology.

[12]  Alison I. Graham,et al.  A Cadmium-Lead-sensing ArsR-SmtB Repressor with Novel Sensory Sites , 2003, Journal of Biological Chemistry.

[13]  A. Mondragón,et al.  Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR , 2003, Science.

[14]  N. Robinson,et al.  Understanding how cells allocate metals using metal sensors and metallochaperones. , 2005, Accounts of chemical research.

[15]  S. Silver,et al.  CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258 , 1995, Journal of bacteriology.

[16]  C. Harwood,et al.  Σ B -dependent General Stress Regulons of Bacillus Subtilis , 2022 .

[17]  N. Robinson,et al.  SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: identification of a Zn inhibited DNA-protein complex. , 1993, Nucleic acids research.

[18]  A. Odermatt,et al.  Copper and Silver Transport by CopB-ATPase in Membrane Vesicles of Enterococcus hirae(*) , 1995, The Journal of Biological Chemistry.

[19]  Tsutomu Sato,et al.  The ars Operon in the skinElement of Bacillus subtilis Confers Resistance to Arsenate and Arsenite , 1998, Journal of bacteriology.

[20]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Young Blueprint for the white plague , 1998, Nature.

[22]  N. Robinson,et al.  Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions , 1993, Molecular microbiology.

[23]  C. Outten,et al.  Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc Homeostasis , 2001, Science.

[24]  Naotake Ogasawara,et al.  Comprehensive DNA Microarray Analysis ofBacillus subtilis Two-Component Regulatory Systems , 2001, Journal of bacteriology.

[25]  A. Odermatt,et al.  Two trans-Acting Metalloregulatory Proteins Controlling Expression of the Copper-ATPases of Enterococcus hirae* , 1995, The Journal of Biological Chemistry.

[26]  D. Giedroc,et al.  Structural and functional characterization of Mycobacterium tuberculosis CmtR, a PbII/CdII-sensing SmtB/ArsR metalloregulatory repressor. , 2005, Biochemistry.

[27]  James C Sacchettini,et al.  A metal-ligand-mediated intersubunit allosteric switch in related SmtB/ArsR zinc sensor proteins. , 2003, Journal of molecular biology.

[28]  C. Harwood,et al.  CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA. , 2003, FEMS microbiology letters.

[29]  B. Rosen,et al.  Role of Cysteinyl Residues in Sensing Pb(II), Cd(II), and Zn(II) by the Plasmid pI258 CadC Repressor* , 2001, The Journal of Biological Chemistry.

[30]  Thomas V. O'Halloran,et al.  Transition Metal Speciation in the Cell: Insights from the Chemistry of Metal Ion Receptors , 2003, Science.

[31]  P. Sadler,et al.  A novel copper site in a cyanobacterial metallochaperone. , 2004, The Biochemical journal.

[32]  D. Nies,et al.  Efflux-mediated heavy metal resistance in prokaryotes. , 2003, FEMS microbiology reviews.

[33]  D. Giedroc,et al.  The zinc metalloregulatory protein Synechococcus PCC7942 SmtB binds a single zinc ion per monomer with high affinity in a tetrahedral coordination geometry. , 2000, Biochemistry.

[34]  K. Taylor,et al.  Crystal structure of the cyanobacterial metallothionein repressor SmtB: a model for metalloregulatory proteins. , 1998, Journal of molecular biology.

[35]  Harry B. Gray,et al.  Copper coordination in blue proteins , 2000, JBIC Journal of Biological Inorganic Chemistry.

[36]  Jun Ye,et al.  Crystal Structure of the Staphylococcus aureus pI258 CadC Cd(II)/Pb(II)/Zn(II)-Responsive Repressor , 2005, Journal of bacteriology.

[37]  Georg Homuth,et al.  Development of a New Integration Site within theBacillus subtilis Chromosome and Construction of Compatible Expression Cassettes , 2001, Journal of bacteriology.

[38]  J. Wu,et al.  Identification of a putative metal binding site in a new family of metalloregulatory proteins. , 1994, The Journal of biological chemistry.

[39]  P. Rich,et al.  A Copper Metallochaperone for Photosynthesis and Respiration Reveals Metal-specific Targets, Interaction with an Importer, and Alternative Sites for Copper Acquisition* , 2002, The Journal of Biological Chemistry.

[40]  N. Robinson,et al.  An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  D. Giedroc,et al.  The SmtB/ArsR family of metalloregulatory transcriptional repressors: Structural insights into prokaryotic metal resistance. , 2003, FEMS microbiology reviews.

[42]  D. Giedroc,et al.  Structural elements of metal selectivity in metal sensor proteins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S. Chakrabarti,et al.  ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus , 1999, Molecular microbiology.

[44]  I. Bertini,et al.  Solution Structures of a Cyanobacterial Metallochaperone , 2004, Journal of Biological Chemistry.

[45]  N. Robinson,et al.  Chimeras of P1‐type ATPases and their transcriptional regulators: contributions of a cytosolic amino‐terminal domain to metal specificity , 2004, Molecular microbiology.

[46]  P. Sadler,et al.  Multiple bacteria encode metallothioneins and SmtA‐like zinc fingers , 2002, Molecular microbiology.

[47]  S. Ehrlich,et al.  A vector for systematic gene inactivation in Bacillus subtilis. , 1998, Microbiology.

[48]  J. Helmann,et al.  Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon. , 2003, Microbiology.

[49]  D. Giedroc,et al.  Elucidation of Primary (α3N) and Vestigial (α5) Heavy Metal-binding Sites in Staphylococcus aureus pI258 CadC: Evolutionary Implications for Metal Ion Selectivity of ArsR/SmtB Metal Sensor Proteins , 2002 .

[50]  J. Helmann,et al.  Genetic and physiological responses of Bacillus subtilis to metal ion stress , 2005, Molecular microbiology.

[51]  Robert J.P. Williams,et al.  The Biological Chemistry of the Elements: The Inorganic Chemistry of Life , 2001 .

[52]  D. Giedroc,et al.  Structural Characterization of Distinct α3N and α5 Metal Sites in the Cyanobacterial Zinc Sensor SmtB , 2002 .

[53]  Tao Wang,et al.  Functional Analysis of the Bacillus subtilis Zur Regulon , 2002, Journal of bacteriology.

[54]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[55]  J. Helmann,et al.  Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators , 2003, Molecular microbiology.

[56]  R. Jayaswal,et al.  Molecular Characterization of a Chromosomal Determinant Conferring Resistance to Zinc and Cobalt Ions inStaphylococcus aureus , 1998, Journal of bacteriology.

[57]  D. Giedroc,et al.  A Novel Cyanobacterial SmtB/ArsR Family Repressor Regulates the Expression of a CPx-ATPase and a Metallothionein in Response to Both Cu(I)/Ag(I) and Zn(II)/Cd(II)* , 2004, Journal of Biological Chemistry.

[58]  T. Ohta,et al.  Chromosome‐Determined Zinc‐Responsible Operon czr in Staphylococcus aureus Strain 912 , 1999, Microbiology and immunology.

[59]  D. Giedroc,et al.  Allosteric negative regulation of smt O/P binding of the zinc sensor, SmtB, by metal ions: a coupled equilibrium analysis. , 2002, Biochemistry.