Complex Dynamics of Projective Synchronization of Chua Circuits with Different Scrolls

In this paper, the dynamics mechanism of the projective synchronization of Chua circuits with different scrolls is investigated analytically through the theory of discontinuous dynamical systems. The analytical conditions for the projective synchronization of Chua circuits with chaotic motions are developed. From these conditions, the parameter characteristics of the projective synchronization of Chua circuits with different scrolls are discussed, and the corresponding parameter maps and the invariant domain for such projective synchronization of Chua circuits are presented. Illustrations for partial and full projective synchronizations of the Chua circuits are given. The projective synchronization of Chua circuits is implemented experimentally, and numerical and experimental results are compared.

[1]  L. Chua The Genesis of Chua's circuit , 1992 .

[2]  G. Zhong Implementation of Chua's circuit with a cubic nonlinearity , 1994 .

[3]  Albert C. J. Luo,et al.  The Mechanism of a Controlled Pendulum Synchronizing with periodic Motions in a periodically forced, damped Duffing oscillator , 2011, Int. J. Bifurc. Chaos.

[4]  Takashi Matsumoto,et al.  A chaotic attractor from Chua's circuit , 1984 .

[5]  G. Zhong,et al.  Experimental confirmation of chaos from Chua's circuit , 1985 .

[6]  Jun-Juh Yan,et al.  Synchronization of a modified Chua's circuit system via adaptive sliding mode control , 2008 .

[7]  A. Luo,et al.  On the projective function synchronization of chaos for two gyroscope systems under sinusoidal constraints , 2013 .

[8]  Guanrong Chen,et al.  Disconnected Synchronized Regions of Complex Dynamical Networks , 2007, IEEE Transactions on Automatic Control.

[9]  Shengli Xie,et al.  Study on the Global Property of the Smooth Chua's System , 2006, Int. J. Bifurc. Chaos.

[10]  L. Chua,et al.  The double scroll , 1985, 1985 24th IEEE Conference on Decision and Control.

[11]  Albert C. J. Luo,et al.  A theory for synchronization of dynamical systems , 2009 .

[12]  A. Luo,et al.  Periodic and chaotic synchronizations of two distinct dynamical systems under sinusoidal constraints , 2012 .

[13]  Albert C. J. Luo,et al.  Discontinuous Dynamical Systems , 2012 .

[14]  Albert C. J. Luo,et al.  An Analytical Prediction of Periodic Flows in the Chua Circuit System , 2009, Int. J. Bifurc. Chaos.

[15]  Michael Peter Kennedy,et al.  A Fast and Simple Implementation of Chua's oscillator with cubic-like Nonlinearity , 2005, Int. J. Bifurc. Chaos.

[16]  Almudena Suarez,et al.  Period-doubling analysis and chaos detection using commercial harmonic balance simulators , 2000 .

[17]  Albert C. J. Luo,et al.  Discontinuous Dynamical Systems on Time-varying Domains , 2009 .

[18]  M. T. Yassen,et al.  Adaptive control and synchronization of a modified Chua's circuit system , 2003, Appl. Math. Comput..

[19]  Albert C. J. Luo,et al.  Dynamical System Synchronization , 2013 .

[20]  E. J. Altman,et al.  Normal form analysis of Chua's circuit with applications for trajectory recognition , 1993 .

[21]  Leon O. Chua,et al.  The double scroll , 1985 .

[22]  L. Chua,et al.  The double scroll family , 1986 .

[23]  Akio Tsuneda,et al.  A Gallery of attractors from Smooth Chua's equation , 2005, Int. J. Bifurc. Chaos.

[24]  T. Hartley The Duffing Double Scroll , 1989, 1989 American Control Conference.

[25]  Mohammad Haeri,et al.  Comparison between different synchronization methods of identical chaotic systems , 2006 .