Torsional energy levels of nitric acid in reduced and full dimensionality with ElVibRot and Tnum.

The internal rotation (nu(9)) of nitric acid is studied using several ab initio models including 1D models and full dimensionality (9D) ones. For the 9D calculations, an adiabatic separation between the large amplitude motion, i.e. the torsion, and the eight other modes is performed. The potential energy surface is calculated at CCSD(T) level with a triple zeta atomic basis set and is expanded in a Taylor series up to the second-order along the torsional path. The vibrational calculations are performed with the codes ElVibRot and Tnum. Our main results show that the torsional energy levels and the corresponding tunneling spliting are in good agreement with the experimental ones. Furthermore, the resonance between 2nu(9) and nu(5) (NO(2) in-plane bending) is also well described with full dimensionality models.

[1]  J. Watson Simplification of the molecular vibration-rotation hamiltonian , 2002 .

[2]  R. Meyer,et al.  General Internal Motion of Molecules, Classical and Quantum‐Mechanical Hamiltonian , 1968 .

[3]  R. Meyer,et al.  Internal Rotation and Vibration in CH2=CCl–CH2D , 1969 .

[4]  J. T. Hougen,et al.  The vibration-rotation problem in triatomic molecules allowing for a large-amplitude bending vibration , 1970 .

[5]  H. Pickett Vibration—Rotation Interactions and the Choice of Rotating Axes for Polyatomic Molecules , 1972 .

[6]  P. Henrici,et al.  Exact solution to the rotation-ring-puckering problem of D 4h -D 2d four-membered ring molecules by infinite matrix diagonalization , 1972 .

[7]  G. Sørensen A new approach to the Hamiltonian of nonrigid molecules , 1979 .

[8]  John E. Adams,et al.  Reaction path Hamiltonian for polyatomic molecules , 1980 .

[9]  J. Laane,et al.  Vector representation of large-amplitude vibrations for the determination of kinetic energy functions , 1982 .

[10]  J. Laane,et al.  Calculation of kinetic energy terms for the vibrational Hamiltonian: Application to large-amplitude vibrations using one-, two-, and three-dimensional models , 1982 .

[11]  T. Carrington,et al.  Reaction surface Hamiltonian for the dynamics of reactions in polyatomic systems , 1984 .

[12]  X. Chapuisat,et al.  Momentum, quasi-momentum and hamiltonian operators in terms of arbitrary curvilinear coordinates, with special emphasis on molecular hamiltonians , 1985 .

[13]  Andr'e Nauts,et al.  Hamiltonians for Constrained N-particle Systems , 1987 .

[14]  J. Light,et al.  Adiabatic approximation and nonadiabatic corrections in the discrete variable representation: Highly excited vibrational states of triatomic molecules , 1987 .

[15]  R. Crownover,et al.  The rotational spectrum of nitric acid: The first five vibrational states , 1988 .

[16]  R. Naaman,et al.  On the apparent spectroscopic rigidity of floppy molecular systems , 1989 .

[17]  J. Bowman,et al.  A movable basis method to calculate vibrational energies of molecules , 1990 .

[18]  C. W. Gillies,et al.  A microwave spectral and ab initio investigation of O3H2O , 1991 .

[19]  X. Chapuisat,et al.  N-body Quantum-mechanical Hamiltonians - Extrapotential Terms , 1991 .

[20]  Henryk Wozniakowski,et al.  Average case complexity of linear multivariate problems I. Theory , 1992, J. Complex..

[21]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[22]  L. Coudert,et al.  Accounting for the Torsional Splitting in the ν5 and 2ν9 Bands of Nitric Acid , 1995 .

[23]  L. Coudert,et al.  Torsional Splitting in the ν9Band of Nitric Acid , 1996 .

[24]  D. Nesbitt,et al.  Vibrational Energy Flow in Highly Excited Molecules: Role of Intramolecular Vibrational Redistribution , 1996 .

[25]  K. Wiberg,et al.  AB INITIO CBS-QCI CALCULATIONS OF THE INVERSION MODE OF AMMONIA , 1997 .

[26]  Y. Smeyers,et al.  Ab initio theoretical study of the methyl and phosphine torsion modes in ethylphosphine , 1997 .

[27]  R. Kosloff,et al.  Quasibound states in long-range alkali dimers: Grid method calculations , 1997 .

[28]  N. Handy,et al.  Extensions and tests of “multimode”: a code to obtain accurate vibration/rotation energies of many-mode molecules , 1998 .

[29]  M. Senent Determination of the kinetic energy parameters of non-rigid molecules , 1998 .

[30]  A. Perrin Recent progress in the analysis of HNO3 spectra , 1998 .

[31]  Benjamin Fehrensen,et al.  Mode selective stereomutation tunnelling in hydrogen peroxide isotopomers , 1999 .

[32]  G. Chaban,et al.  Ab initio calculation of anharmonic vibrational states of polyatomic systems: Electronic structure combined with vibrational self-consistent field , 1999 .

[33]  M. Beck,et al.  The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .

[34]  B. Kuhn,et al.  State-to-state studies of intramolecular energy transfer in highly excited HOOH(D): Dependencies on vibrational and rotational excitation , 2000 .

[35]  Y. Dimitrova Ab initio study of the vibrational spectra of the hydrogen-bonded nitric acid dimer. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[36]  Andr'e Nauts,et al.  Exact numerical computation of a kinetic energy operator in curvilinear coordinates , 2002 .

[37]  R. Saykally,et al.  Determination of a flexible (12D) water dimer potential via direct inversion of spectroscopic data , 2002 .

[38]  F. Gatti Flexible monomer formulation for non-rigid systems , 2003 .

[39]  S. Carter,et al.  MULTIMODE: A code to calculate rovibrational energies of polyatomic molecules , 2003 .

[40]  D. Lauvergnat,et al.  Quantum study of the internal rotation of methanol in full dimensionality (1+11D): a harmonic adiabatic approximation , 2003 .

[41]  G. Rauhut Efficient calculation of potential energy surfaces for the generation of vibrational wave functions. , 2004, The Journal of chemical physics.

[42]  J. Orphal,et al.  New analysis of the ν5 and 2ν9 bands of HNO3 by infrared and millimeter wave techniques: line positions and intensities , 2004 .

[43]  D. Lauvergnat,et al.  A harmonic adiabatic approximation to calculate vibrational states of ammonia , 2004 .

[44]  Y. Miller,et al.  Theoretical study of anharmonic vibrational spectra of HNO3, HNO3–H2O, HNO4: Fundamental, overtone and combination excitations , 2005 .

[45]  P. Cassam-Chenaï,et al.  The VMFCI method: A flexible tool for solving the molecular vibration problem , 2006, J. Comput. Chem..

[46]  G. Dive,et al.  Dynamics of complex molecular systems with numerical kinetic energy operators in generalized coordinates , 2006 .

[47]  B. Hartke,et al.  Fingerprints of delocalized transition states in quantum dynamics. , 2006, The journal of physical chemistry. A.

[48]  D. Benoit Efficient correlation-corrected vibrational self-consistent field computation of OH-stretch frequencies using a low-scaling algorithm. , 2006, The Journal of chemical physics.

[49]  I. Ortega,et al.  Infrared spectra of nitric acid trihydrate (β‐NAT): A comparison of available optical constants and implication for the detection of polar stratospheric clouds (PSCs) , 2006 .

[50]  N. Handy,et al.  A reaction surface Hamiltonian study of malonaldehyde. , 2006, The Journal of chemical physics.

[51]  D. Bégué,et al.  A comparison of two methods for selecting vibrational configuration interaction spaces on a heptatomic system: ethylene oxide. , 2007, The Journal of chemical physics.

[52]  Vasile Gradinaru,et al.  Strang Splitting for the Time-Dependent Schrödinger Equation on Sparse Grids , 2007, SIAM J. Numer. Anal..

[53]  P. Jensen,et al.  Theoretical ROVibrational Energies (TROVE) : A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules , 2007 .

[54]  T. Sølling,et al.  Wave packet simulation of nonadiabatic dynamics in highly excited 1,3-dibromopropane. , 2008, The journal of physical chemistry. A.

[55]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[56]  M. Gordon,et al.  Predicting accurate vibrational frequencies for highly anharmonic systems. , 2008, The Journal of chemical physics.

[57]  T. Carrington,et al.  Vibrational energy levels of CH5(+). , 2008, The Journal of chemical physics.

[58]  Arndt Meier,et al.  An Intercomparison of Ground-Based Solar FTIR Measurements of Atmospheric Gases at Eureka, Canada , 2008 .

[59]  H. Meyer,et al.  Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum. , 2009, The Journal of chemical physics.

[60]  J. Demaison,et al.  Anharmonic force field and equilibrium structure of nitric acid , 2009 .

[61]  J. M. Bofill,et al.  A restricted quantum reaction path Hamiltonian: theory, discrete variable representation propagation algorithm, and applications. , 2009, The Journal of chemical physics.

[62]  T. Carrington,et al.  Nonproduct quadrature grids for solving the vibrational Schrödinger equation. , 2009, The Journal of chemical physics.

[63]  A. Császár,et al.  Toward black-box-type full- and reduced-dimensional variational (ro)vibrational computations. , 2009, The Journal of chemical physics.

[64]  R. van Harrevelt,et al.  Vibration-rotation-tunneling levels of the water dimer from an ab initio potential surface with flexible monomers. , 2009, The journal of physical chemistry. A.

[65]  B. Kirtman,et al.  Treatment of nonlinear optical properties due to large amplitude anharmonic vibrational motions: umbrella motion in NH3. , 2009, The Journal of chemical physics.

[66]  F. Gatti,et al.  Exact and constrained kinetic energy operators for polyatomic molecules: The polyspherical approach , 2009 .

[67]  N. Handy,et al.  High torsional vibrational energies of H2O2 and CH3OH studied by MULTIMODE with a large amplitude motion coupled to two effective contraction schemes , 2009 .