Silk fibroin-based biopolymer composite binders with gradient binding energy and strong adhesion force for high-performance micro-sized silicon anodes

[1]  Shenglin Xiong,et al.  Interfacial design of silicon/carbon anodes for rechargeable batteries: A review , 2022, Journal of Energy Chemistry.

[2]  F. Boorboor Ajdari,et al.  Interface‐Adaptive Binder Enabled by Supramolecular Interactions for High‐Capacity Si/C Composite Anodes in Lithium‐Ion Batteries , 2022, Advanced Functional Materials.

[3]  K. Han,et al.  Deep eutectic solvent-based polymer electrolyte for solid-state lithium metal batteries , 2022, Journal of Energy Chemistry.

[4]  G. Ungar,et al.  Gradient H‐Bonding Binder Enables Stable High‐Areal‐Capacity Si‐Based Anodes in Pouch Cells , 2021, Advanced materials.

[5]  Yi Cui,et al.  Silicon anodes , 2021, Nature Energy.

[6]  Sarah L. Frisco,et al.  Robust Solid/Electrolyte Interphase (SEI) Formation on Si Anodes Using Glyme-Based Electrolytes , 2021 .

[7]  G. Moore,et al.  Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice , 2021, Nature communications.

[8]  Jaephil Cho,et al.  Stress Relief Principle of Micron‐Sized Anodes with Large Volume Variation for Practical High‐Energy Lithium‐Ion Batteries , 2020, Advanced Functional Materials.

[9]  Qingping Wu,et al.  Metal‐Chelated Biomimetic Polyelectrolyte as a Powerful Binder for High‐Performance Micron Silicon Anodes , 2020 .

[10]  J. Lou,et al.  Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries , 2020 .

[11]  S. Y. Kim,et al.  Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review , 2019, Polymers.

[12]  F. Omenetto,et al.  Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces , 2019, Proceedings of the National Academy of Sciences.

[13]  Erik A. Wu,et al.  Role of Polyacrylic Acid (PAA) Binder on the Solid Electrolyte Interphase in Silicon Anodes , 2019, Chemistry of Materials.

[14]  Zhiyong Wang,et al.  Efficient Nanostructuring of Silicon by Electrochemical Alloying/Dealloying in Molten Salts for Improved Lithium Storage. , 2018, Angewandte Chemie.

[15]  Jiulin Wang,et al.  Silicon Microparticle Anodes with Self-Healing Multiple Network Binder , 2018 .

[16]  Kevin A. Hays,et al.  What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes? , 2018 .

[17]  S. Lanceros‐Méndez,et al.  Silk Fibroin Separators: A Step Toward Lithium-Ion Batteries with Enhanced Sustainability. , 2018, ACS applied materials & interfaces.

[18]  J. Choi,et al.  Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries , 2017, Science.

[19]  Fiorenzo G. Omenetto,et al.  A Biodegradable Thin-Film Magnesium Primary Battery Using Silk Fibroin–Ionic Liquid Polymer Electrolyte , 2017 .

[20]  F. Omenetto,et al.  Silk Fibroin‐Carbon Nanotube Composite Electrodes for Flexible Biocatalytic Fuel Cells , 2016 .

[21]  Chuanbao Cao,et al.  Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. , 2015, ACS nano.

[22]  Donghai Wang,et al.  Interpenetrated Gel Polymer Binder for High‐Performance Silicon Anodes in Lithium‐ion Batteries , 2014 .

[23]  Benjamin P. Partlow,et al.  The use of silk-based devices for fracture fixation , 2014, Nature Communications.

[24]  J. Y. Lim,et al.  Electrical, structural, and thermal studies of antimony trioxide-doped poly(acrylic acid)-based composite polymer electrolytes , 2014, Ionics.

[25]  C. S. Wong,et al.  Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma. , 2013, Colloids and surfaces. B, Biointerfaces.

[26]  Z. Shao,et al.  FTIR imaging, a useful method for studying the compatibility of silk fibroin-based polymer blends , 2013 .

[27]  M. Ge,et al.  Review of porous silicon preparation and its application for lithium-ion battery anodes , 2013, Nanotechnology.

[28]  Meng-Hsuan Hsiao,et al.  Improved pH-responsive amphiphilic carboxymethyl-hexanoyl chitosan–poly(acrylic acid) macromolecules for biomedical applications , 2013 .

[29]  Y. Jung,et al.  Scalable Fabrication of Silicon Nanotubes and their Application to Energy Storage , 2012, Advanced materials.

[30]  Jaephil Cho,et al.  A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. , 2012, Angewandte Chemie.

[31]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[32]  Z. Shao,et al.  Synchrotron FTIR microspectroscopy of single natural silk fibers. , 2011, Biomacromolecules.

[33]  Kang Xu,et al.  Interfacing electrolytes with electrodes in Li ion batteries , 2011 .

[34]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[35]  Pengjian Zuo,et al.  Simple annealing process for performance improvement of silicon anode based on polyvinylidene fluoride binder , 2010 .

[36]  Harold H. Kung,et al.  Silicon nanoparticles-graphene paper composites for Li ion battery anodes. , 2010, Chemical communications.

[37]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[38]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[39]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .

[40]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[41]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .