An Efficient Spectral-Projection Method for the Navier–Stokes Equations in Cylindrical Geometries: I. Axisymmetric Cases

Abstract An efficient and accurate numerical scheme is presented for the axisymmetric Navier–Stokes equations in primitive variables in a cylinder. The scheme is based on a new spectral-Galerkin approximation for the space variables and a second-order projection scheme for the time variable. The new spectral-projection scheme is implemented to simulate the unsteady incompressible axisymmetric flow with a singular boundary condition which is approximated to within a desired accuracy by using a smooth boundary condition. A sensible comparison is made with a standard second-order (in time and space) finite difference scheme based on a stream function-vorticity formulation and with available experimental data. The numerical results indicate that both schemes produce very reliable results and that despite the singular boundary condition, the spectral-projection scheme is still more accurate (in terms of a fixed number of unknowns) and more efficient (in terms of CPU time required for resolving the flow at a fixed Reynolds number to within a prescribed accuracy) than the finite difference scheme. More importantly, the spectral-projection scheme can be readily extended to three-dimensional nonaxisymmetric cases.

[1]  W. Heinrichs,et al.  Spectral collocation methods and polar coordinate singularities , 1991 .

[2]  L. Tuckerman Divergence-free velocity fields in nonperiodic geometries , 1989 .

[3]  John P. Boyd,et al.  Chebyshev pseudospectral method of viscous flows with corner singularities , 1989 .

[4]  Jie Shen,et al.  On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes , 1996, Math. Comput..

[5]  J. N. Sørensen,et al.  Simulation numérique de l'écoulement périodique axisymétrique dans une cavité cylindrique , 1989 .

[6]  Juan Lopez,et al.  Axisymmetric vortex breakdown Part 1. Confined swirling flow , 1990, Journal of Fluid Mechanics.

[7]  Michel Deville,et al.  Chebyshev collocation solutions of the Navier-Stokes equations using multi-domain decomposition and finite element preconditioning , 1991 .

[8]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[9]  Juan Lopez,et al.  Axisymmetric vortex breakdown Part 2. Physical mechanisms , 1990, Journal of Fluid Mechanics.

[10]  J. Lopez,et al.  Axisymmetric vortex breakdown. Part 3 Onset of periodic flow and chaotic advection , 1992, Journal of Fluid Mechanics.

[11]  Steven A. Orszag,et al.  Fourier Series on Spheres , 1974 .

[12]  T. Taylor,et al.  A Pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations , 1987 .

[13]  M. Mundt,et al.  Instability of oscillatory Stokes-Stewartson layers in a rotating fluid , 1996, Journal of Fluid Mechanics.

[14]  M. P. Escudier,et al.  Observations of the flow produced in a cylindrical container by a rotating endwall , 1984 .

[15]  Jens Nørkær Sørensen,et al.  Direct numerical simulation of rotating fluid flow in a closed cylinder , 1995 .

[16]  John R. Rice,et al.  Direct solution of partial difference equations by tensor product methods , 1964 .

[17]  J. Hart,et al.  Instabilities of the sidewall boundary layer in a differentially driven rotating cylinder , 1996 .

[18]  Philip S. Marcus,et al.  A Spectral Method for Polar Coordinates , 1995 .

[19]  Brian J. Cantwell,et al.  Oscillatory flow states in an enclosed cylinder with a rotating endwall , 1999 .

[20]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[21]  J. Lopez Flow between a stationary and a rotating disk shrouded by a co‐rotating cylinder , 1996 .

[22]  Jie Shen,et al.  Efficient Spectral-Galerkin Methods III: Polar and Cylindrical Geometries , 1997, SIAM J. Sci. Comput..

[23]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[24]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[25]  Paul N. Swarztrauber,et al.  EFFICIENT FORTRAN SUBPROGRAMS FOR THE SOLUTION OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1981 .

[26]  P. Weidman,et al.  Stability of stationary endwall boundary layers during spin-down , 1996, Journal of Fluid Mechanics.

[27]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part III. Smoothing property and higher order error estimates for spatial discretization , 1988 .

[28]  H. Pao Numerical Solution of the Navier‐Stokes Equations for Flows in the Disk‐Cylinder System , 1972 .

[29]  H. Lugt,et al.  Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid , 1987, Journal of Fluid Mechanics.

[30]  Jie Shen,et al.  Hopf bifurcation of the unsteady regularized driven cavity flow , 1991 .

[31]  G. Neitzel Streak-line motion during steady and unsteady axisymmetric vortex breakdown , 1988 .

[32]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[33]  G. Georgiou,et al.  A singular finite element for Stokes flow: The stick–slip problem , 1989 .

[34]  N. Tsitverblit Vortex breakdown in a cylindrical container in the light of continuation of a steady solution , 1993 .

[35]  Boundary layer separation in a rotating container , 1996 .

[36]  H. Lugt,et al.  Development of flow circulation in a rotating tank , 1973 .

[37]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .