Extremal energies of Laplacian operator: Different configurations for steady vortices

In this paper, we study a maximization and a minimization problem associated with a Poisson boundary value problem. Optimal solutions in a set of rearrangements of a given function define stationary and stable flows of an ideal fluid in two dimensions. The main contribution of this paper is to determine the optimal solutions. At first, we derive the solutions analytically when the problems are in low contrast regime. Moreover, it is established that the solutions of both problems are unique. Secondly, for the high contrast regime, two optimization algorithms are developed. For the minimization problem, we prove that our algorithm converges to the global minimizer regardless of the initializer. The maximization algorithm is capable of deriving all local maximizers including the global one. Numerical experiments leads us to a conjecture about the location of the maximizers in the set of rearrangements of a function.

[1]  Yuan Lou,et al.  Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. , 2008, Mathematical biosciences and engineering : MBE.

[2]  Carlos Conca,et al.  Minimization of the Ground State for Two Phase Conductors in Low Contrast Regime , 2012, SIAM J. Appl. Math..

[3]  Fadil Santosa,et al.  Maximization of the quality factor of an optical resonator , 2008 .

[4]  Antoine Laurain GLOBAL MINIMIZER OF THE GROUND STATE FOR TWO PHASE CONDUCTORS IN LOW CONTRAST REGIME , 2014 .

[5]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[6]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[7]  Jean-Pierre Gossez,et al.  Minimization of eigenvalues for a quasilinear elliptic Neumann problem with indefinite weight , 2010 .

[8]  S. Osher,et al.  Level Set Methods for Optimization Problems Involving Geometry and Constraints I. Frequencies of a T , 2001 .

[9]  F. Bahrami,et al.  Existence of energy minimizing vortices attached to a flat-top seamount , 2007 .

[10]  S. Osher,et al.  Maximizing band gaps in two-dimensional photonic crystals by using level set methods , 2005 .

[11]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[12]  G. R. Burton,et al.  Rearrangements of functions, maximization of convex functionals, and vortex rings , 1987 .

[13]  Fariba Bahrami,et al.  A nonlinear eigenvalue problem arising in a nanostructured quantum dot , 2014, Commun. Nonlinear Sci. Numer. Simul..

[14]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[15]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[16]  Pierre-Louis Lions,et al.  On optimization problems with prescribed rearrangements , 1989 .

[17]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[18]  D. Grieser,et al.  Symmetry Breaking and Other Phenomena in the Optimization of Eigenvalues for Composite Membranes , 1999, math/9912116.

[19]  A. Masters Rearrangements and Vortices , 2014 .

[20]  Seyyed Abbas Mohammadi,et al.  Extremal principal eigenvalue of the bi-Laplacian operator , 2016 .

[21]  Chiu-Yen Kao,et al.  Efficient Rearrangement Algorithms for Shape Optimization on Elliptic Eigenvalue Problems , 2013, J. Sci. Comput..

[22]  A. Choudary,et al.  Partial Differential Equations An Introduction , 2010, 1004.2134.

[23]  G. R. Burton,et al.  Variational problems on classes of rearrangements and multiple configurations for steady vortices , 1989 .

[24]  G. Burton,et al.  Maximisation and minimisation on classes of rearrangements , 1991, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[25]  Fariba Bahrami,et al.  Shape dependent energy optimization in quantum dots , 2012, Appl. Math. Lett..