Proof of the fundamental gap conjecture

We prove the Fundamental Gap Conjecture, which states that the difference between the first two Dirichlet eigenvalues (the spec- tral gap) of a Schrodinger operator with convex potential and Dirichlet boundary data on a convex domain is bounded below by the spectral gap on an interval of the same diameter with zero potential. More generally, for an arbitrary smooth potential in higher dimensions, our proof gives both a sharp lower bound for the spectral gap and a sharp modulus of concavity for the logarithm of the first eigenfunction, in terms of the diameter of the domain and a modulus of convexity for the potential.

[1]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[2]  S. Yau Nonlinear Analysis In Geometry , 1986 .

[3]  E. Lieb,et al.  On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .

[4]  Nicholas J. Korevaar Convex solutions to nonlinear elliptic and parabolic boundary value problems , 1981 .

[5]  R. Smits Spectral gaps and rates to equilibrium for diffusions in convex domains. , 1996 .

[6]  M. Ashbaugh The Fundamental Gap , 2006 .

[7]  Lower bounds of the gap between the first and second eigenvalues of the Schrödinger operator , 1986 .

[8]  Hung-hsi Wu The Estimate of the First Eigenvalue of a Compact Riemannian Manifold , 1991 .

[9]  Burgess Davis On the spectral gap for fixed membranes , 2001 .

[10]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[11]  S. Yau,et al.  Estimates of eigenvalues of a compact Riemannian manifold , 1980 .

[12]  Antoine Henrot,et al.  Variation et optimisation de formes : une analyse géométrique , 2005 .

[13]  Shing-Tung Yau,et al.  An Estimate of the Gap of the First Two Eigenvalues in the Schr , 2009, 0902.2250.

[14]  R. Bañuelos,et al.  Gradient Estimates for the Ground State¶Schrödinger Eigenfunction and Applications , 2001 .

[15]  B. Andrews,et al.  Time-interior gradient estimates for quasilinear parabolic equations , 2013, 1306.1281.

[16]  P. Kröger On the spectral gap for compact manifolds , 1992 .

[17]  S. Yau Gap of the First Two Eigenvalues of the Schr , 2009, 0902.2253.

[18]  Hongcang Yang,et al.  ON THE ESTIMATE OF THE FIRST EIGENVALUE OF A COMPACT RIEMANNIAN MANIFOLD , 1984 .

[19]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[20]  R. Lavine THE EIGENVALUE GAP FOR ONE-DIMENSIONAL CONVEX POTENTIALS , 1994 .

[21]  On condensation in the free-boson gas and the spectrum of the Laplacian , 1983 .

[22]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[23]  R. Benguria,et al.  Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials , 1989 .

[24]  R. Bañuelos,et al.  Sharp Inequalities for Heat Kernels of Schrödinger Operators and Applications to Spectral Gaps , 2000 .

[25]  E. Harrell Double Wells , 1980 .

[26]  Estimates on the Lower Bound of the First Gap , 2004, math/0404418.

[27]  B. Andrews,et al.  Lipschitz bounds for solutions of quasilinear parabolic equations in one space variable , 2009, 1306.1278.