Proof of the fundamental gap conjecture
暂无分享,去创建一个
[1] Antoine Henrot,et al. Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .
[2] S. Yau. Nonlinear Analysis In Geometry , 1986 .
[3] E. Lieb,et al. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .
[4] Nicholas J. Korevaar. Convex solutions to nonlinear elliptic and parabolic boundary value problems , 1981 .
[5] R. Smits. Spectral gaps and rates to equilibrium for diffusions in convex domains. , 1996 .
[6] M. Ashbaugh. The Fundamental Gap , 2006 .
[7] Lower bounds of the gap between the first and second eigenvalues of the Schrödinger operator , 1986 .
[8] Hung-hsi Wu. The Estimate of the First Eigenvalue of a Compact Riemannian Manifold , 1991 .
[9] Burgess Davis. On the spectral gap for fixed membranes , 2001 .
[10] Antoine Henrot,et al. Variation et optimisation de formes , 2005 .
[11] S. Yau,et al. Estimates of eigenvalues of a compact Riemannian manifold , 1980 .
[12] Antoine Henrot,et al. Variation et optimisation de formes : une analyse géométrique , 2005 .
[13] Shing-Tung Yau,et al. An Estimate of the Gap of the First Two Eigenvalues in the Schr , 2009, 0902.2250.
[14] R. Bañuelos,et al. Gradient Estimates for the Ground State¶Schrödinger Eigenfunction and Applications , 2001 .
[15] B. Andrews,et al. Time-interior gradient estimates for quasilinear parabolic equations , 2013, 1306.1281.
[16] P. Kröger. On the spectral gap for compact manifolds , 1992 .
[17] S. Yau. Gap of the First Two Eigenvalues of the Schr , 2009, 0902.2253.
[18] Hongcang Yang,et al. ON THE ESTIMATE OF THE FIRST EIGENVALUE OF A COMPACT RIEMANNIAN MANIFOLD , 1984 .
[19] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[20] R. Lavine. THE EIGENVALUE GAP FOR ONE-DIMENSIONAL CONVEX POTENTIALS , 1994 .
[21] On condensation in the free-boson gas and the spectrum of the Laplacian , 1983 .
[22] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[23] R. Benguria,et al. Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials , 1989 .
[24] R. Bañuelos,et al. Sharp Inequalities for Heat Kernels of Schrödinger Operators and Applications to Spectral Gaps , 2000 .
[25] E. Harrell. Double Wells , 1980 .
[26] Estimates on the Lower Bound of the First Gap , 2004, math/0404418.
[27] B. Andrews,et al. Lipschitz bounds for solutions of quasilinear parabolic equations in one space variable , 2009, 1306.1278.