ScaleMaster 2.0: a ScaleMaster extension to monitor automatic multi-scales generalizations

Little by little, co-existing geographical data sets are integrated into multi-representation databases, where the data sets represent different level of detail, or different point of views for the same geographical features. The ScaleMaster model makes it possible to formalize how to choose the features to map from the different data sets. The paper proposes an extension of the ScaleMaster model that drives automatic generalization rather than guidelines for manual mapmaking. The ScaleMaster 2.0 has been implemented and is tested for use with real data.

[1]  Tapani Sarjakoski,et al.  Simultaneous Graphic Generalization of Vector Data Sets , 2002, GeoInformatica.

[2]  Cynthia A. Brewer,et al.  Framing Guidelines for Multi-Scale Map Design Using Databases at Multiple Resolutions , 2007 .

[3]  Barbara P. Buttenfield,et al.  Mastering map scale: balancing workloads using display and geometry change in multi-scale mapping , 2010, GeoInformatica.

[4]  R. Thomson,et al.  The ‘ Good Continuation ’ Principle of Perceptual Organization applied to the Generalization of Road Networks , 2002 .

[5]  C. Duchêne,et al.  CollaGen: Collaboration between automatic cartographic Generalisation Processes , 2011 .

[6]  P. V. Oosterom,et al.  Towards a true vario-scale structure supporting smooth-zoom , 2011 .

[7]  Theodor Foerster,et al.  Towards a formal classification of generalization operators , 2007 .

[8]  Robert Weibel,et al.  Integrating multi agent, object oriented and algorithmic techniques for improved automoated map generalisation , 2001 .

[9]  S. Mustière Apprentissage supervise pour la generalisation cartographique , 2001 .

[10]  Robert E. Roth,et al.  A typology of operators for maintaining legible map designs at multiple scales , 2011 .

[11]  Monika Sester,et al.  Optimization approaches for generalization and data abstraction , 2005, Int. J. Geogr. Inf. Sci..

[12]  Martijn Meijers Simultaneous & topologically-safe line simplification for a variable-scale planar partition , 2011, AGILE Conf..

[13]  A Comparison of Star and Ladder Generalization Strategies for Intermediate Scale Processing of USGS National Hydrography Dataset , 2011 .

[14]  Robert Weibel,et al.  Modelling the Overall Process of Generalisation , 2007 .

[15]  Geoffrey Edwards,et al.  - 1The Importance of Modelling Pattern and Structure in Automated Map Generalisation , 2002 .

[16]  Cécile Duchêne,et al.  Capitalisation Problem in Research - Example of a New Platform for Generalisation: Cartagen , 2010 .

[17]  C. Duchêne AUTOMATED MAP GENERALISATION USING COMMUNICATING AGENTS , 2003 .

[18]  P. V. Oosterom Variable-scale Topological Data Structures Suitable for Progressive Data Transfer: The GAP- face Tree and GAP-edge Forest , 2005 .

[19]  Abadie Nathalie,et al.  Schema Matching Based on Attribute Values and Background Ontology , 2009 .

[20]  Maria Pla,et al.  ICC Topographic Databases: Design of a MRDB for data management optimization , 2012 .

[21]  Barbara P. Buttenfield,et al.  Multiscale Representations of Water: Tailoring Generalization Sequences to Specific Physiographic Regimes , 2010 .

[22]  Julien Perret,et al.  GeOxygene: Built on Top of the Expertise of the French NMA to Host and Share Advanced GI Science Research Results , 2009, OGRS.

[23]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .